3 Measures of forest fragmentation at varying spatial

resolutions, a study from central Italy

The purpose of the analysis carried out in this chapter was to investigate the potential of using
spatial metrics to describe the structure of a forested landscape, and to investigate further how
these metrics behave when calculated at different scales and based on different input data
types. The analyses carried out here formed part of studies for the Eurolandscape project,
where selection of indices for forest structural assessment at the European level was one of the
work packages. The early phases of that work concentrated on some relatively simple
measures, which also had the advantage of being possible to control visually by comparison

with the input data, in this case images classified into forest-non/forest maps.

One commonly used approach for examination of scaling (grain size) effects is to spatially
degrade raster data (high resolution imagery) that is assumed to express the "real" situation,
i.e. the "true" shape and distribution of forest patches (Turner ez al 1989). Here, it was
investigated whether the use of spatial indices can assist in the scaling process or deliver
supplemental information about it. A particularly important task, given the data available and
considerations of data costs, was to investigate the possibility of relating the values of spatial
indices derived from medium resolution data (e.g. WiFS-based forest maps) to those derived
from high-resolution data or detailed forest/land cover maps. If such relations were
established, it could make possible the extraction of information at the scale where processes
important to ecosystems take place. A part of the justification for this study was to look
deeper into the usefulness of the two new metrics proposed by Frohn (1998) and to compare

them with the better known and more commonly used Matheron index.

3.1 Methodology

The first step included simulation of how a forested landscape appears as raster images from

EO sources at different spatial resolutions (pixel or grain sizes). The indices mentioned in
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section 2.3.4 were calculated for the same cells or sub-landscape, thus assessing the influence
of the apparent aggregation and isolation processes which are known to take place when
changing sensor or pixel size (Bian 1997, Cao and Lam 1997). The forest-non-forest maps
with different resolutions were derived from a synthetic image, produced by assigning pixel
values to the cells of a grid, from a vector coverage. The initial (base) image was the one with
the highest spatial resolution, i.e. smallest pixel size; this cell size can be as small as the
resolution of the data from which the maps or GIS coverages were originally made. Images at
coarser resolution were made by majority filtering of the binary images, using gradually larger

kernels (2, 4, 8 and finally 16 pixels).

Aggregation of pixels

N s a%a

Sl ffJ“
gi?é‘g Jﬁ%@" ll:fa!

12.5m pixel size 50m pixel size 200m pixel size

background = non-forest
[ forest pixel with 4 edges
Wforest pixel with 3 edges
[ forest pixel with 2 edges
[ forest pixel with 1 edge
no edges= internal forest pixel

Figure 3.1 Aggregation of pixels from synthetic forest-non-forest image A 3*3 km subset is shown

here, similar to one of the windows used for calculation of spatial metrics.

In the second step, real satellite images were used and the effort focused on establishing
relations between the spatial measures derived from forest/non-forest images for cells or sub-
landscapes of the same spatial extent but necessarily of different size measured in pixels. Even
when this was not possible, the results point to some reasons why scaling or multi-sensor

problems occur.
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Assuming that a linear relation exists between spatial scale, expressed as grain size (in this
case equal to pixel size) and the values of the metrics, a relation like this is expected:

SM = Ap+B
Where SM is the actual spatial metric, p is the pixel size (diameter or edge length), A and B
are coefficients characteristic to the dataset or data type in question, such as the geographic
region or the type of land cover map. This follows the methods of Benson and MacKenzie
(1995) and Turner et al (1989), although in the latter study, the regressions were performed

between metric values and the log of the aggregate pixel size.

The task of generating forest maps from remotely sensed data is not a trivial one (McGwire
1992, Héusler et al 1993, Mayaux and Lambin 1995 and 1997), so for this study a robust and
proven approach had to be selected. Because emphasis was on correct description of spatial
structure rather than classification accuracy, it was decided to do unsupervised classification
of the satellite images from the study area, in order apply the same approach to the two types
of satellite data used here. For each of the multi-spectral images, a number of spectral clusters
are identified and each pixel in the image assigned to the nearest one. After inspection of
Red-Near Infrared ‘scattergrams’ (see Figure 3.13 and Figure 3.14), of CLC data and of the
GIS data (a regional, administrative forest map), the spectral classes were assigned to either

forest or non-forest.
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Figure 3.2 Extraction of edge (count) data from binary (forest-non-forest) images.

The map images were then filtered at each resolution, as illustrated in Figure 3.2. This was
done for two reason, first to provide input to edge-counting for calculation of the Matheron
and the SqP indices and secondly for illustrations of the effects of spatial degradation, as they

e.g. appear in Figure 3.1.

Assuming that the satellite images, the results of the classifications, and the land cover maps
made from these describe a landscape, it follows that in order to meaningfully apply metrics

that describe the structural variation within the landscape which is important for its stability

(Kareiva and Wennergren 1995), smaller subsets of these maps (sub-landscapes) must be
used. For that reason it was found appropriate to use a modified version of the Fragstats
software package (McGarigal and Marks 1994), in order to make it possible to apply a
"moving-window" approach. This approach was developed and applied in a study carried out
for the FIRS project (Héusler et a/ 2000), as part of a study financed by the Directorate
General VI of the European Commission, called "Pilot Study in the Field of Monitoring
Forested Areas"’. The aim of the project was to demonstrate satellite based methods for the

operational assessment of changes and structural diversity of European Forest Ecosystems and

? (Contract N° 9662C0001), carried out by a European Consortium lead by GAF, Munich. The name of
DG VI has since been changed to DG Agriculture.
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to define the requirements for the implementation of a monitoring system, and the use of
spatial indices was considered a natural part of such a system. The outputs from the
calculation of the various metrics are initially stored in table format in text-files (or files that
can be read using any text editing software tool). These files can be imported into
spreadsheets for statistical analysis, or converted to three-dimensional grids using e.g. Surfer
(Keckler 1997), or even directly imported (as ASCII files, given the number of rows and
columns is known) into image processing programs. Back in an image processing
environment the grids can be edited, typically by adding header-information to, once again be
geo-referenced, and thus used in combination with GIS data vector layers or other raster

images.

The image processing software used for this study was WinChips (Hansen 2001), statistical
processing and drawing of graphs was done with the Microsoft Excel spreadsheet. Calculation
of the Matheron index is not implemented in Fragstats, thus this index was calculated from
image statistics extracted for each grid cell of an (Arc-View format) shape-file, using the grids
shown in Figure 3.5 and Figure 3.6. In this particular case the method applied was calculation

of spatial metrics in moving windows without overlap, thus there are no smoothing effects.

3.2 Data

The test site is an intensively forested area, located in the Italian region of Umbria near the
city of Foligno (south of Perugia), in the Apennine Mountains. The forests are mainly
deciduous in composition, and are made up of oak, beech, and other species. The forests are
managed using both coppice and high-forest silvicultural systems. The topography is
mountainous, with elevation from 207 to 1425 metres above sea level. The test site is located

in Landsat TM scene 191-030, with the scene centre at 43.30 latitude, 12.75 longitude.

The Landsat TM data were acquired as part of a study on the application of the Forest Light

Interaction Model (FLIM) for mapping forest structural parameters, following the approach
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described by McCormick (1996). A sub scene of an image acquired 12" July 1996 was

extracted, 50*50 kilometres in extent. This image was ortho-rectified to UTM projection

using a digital terrain model. Only bands 3, 4, and 5 have been used. An area of slightly

greater extent than the subscene was described in detail by a GIS coverage of forest types and

properties (Grohmann 2000), made at the forest department of the Regione di Umbria. The

nominal resolution of Landsat TM images is 28.5%28.5m, in this study the images were

rectified to pixel size 25*25 m.

Landsat TM IRS WIFS
band nr. wavelgt. um band nr. wavelgt. um
Red 3 0.63-0.69 1 0.62-0.68
NIR 4 0.76-0.90 2 0.77-0.86
MIR 5 1.55-1.75

Table 3.1 Satellite data used for forest mapping.

Adriatic Sea

+ -Ancona

Figure 3.3 Location of the test areas, shown on false colour WiFS image, red band = WiFS channel 2

(NIR), green band = NDVI ((b2-b1)/(b2+b1)), blue band = WiFS channel 1 (red refl.). Forested areas

are seen as green/yellow, agricutural areas as red/blue. The image was acquired 2. Sept. 1997, the

extent is the same as a full Landsat scene, i.e. 180*180 km.
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The WiFS data were acquired on Sep. 2 1997, and has been used in a pilot study about forest
mapping at regional scales by medium resolution data, carried out at VTT, Finland (Héme et
al 1999). The data have undergone atmospheric correction using the 6S code (Tanre et al
1992) and a BiDirectional Reflectivity Function (BDRF) correction for surface topography.
The data were supplied in the projection of the CORINE land cover database (Lambert
Azimutal) re-projected to Universal Transverse Mercator (UTM) zone 33 coordinates, and
finally had to be shifted to fit the TM data exactly, by interactive inspection and changing
offset values of the two images. The locations of the subsets used in this study, the 50*50 km
TM and WiFS images and the 25*25 km synthetic image are shown in Figure 3.3. The
nominal resolution of the WiFS sensor is 180 m, the data used here were rectified to a pixel

size of 200 m. The spectral characteristics of the satellite data used are shown in Table 3.1.

Figure 3.4 Geo-rectified subset of the Landsat TM scene recorded 12 July 1996, bands 3 (red),
4(green) and 5 (blue), extent 50 km. Agricultural fields, dominant in the Val Umbra to the left (west)

appear red, grasslands bright green and forest in darker green shades.
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3.3 Results

In this section, the main findings from simple statistical analysis of the results from image
processing and calculation of spatial metrics are presented, with focus on scaling effects. Also
the display of the calculated spatial metrics and in map-form and graphical display of their

scaling behaviour are addressed.

3.3.1 Synthetic images, scaling properties

All forest class layers of the GIS coverage were combined and used for creating a raster image
that could simulate high resolution satellite imagery. The pixel size was set to 12.5m, and the
extent of this image was 25*%25km. The image was then gradually degraded to pixel sizes of
25,50, 100 and 200 m, as described in the previous section. For each image SqP, PPU and M
were calculated for each cell, in this case the image was viewed as 64 cells of each 3*3 km,
thus excluding the the southernmost and easternmost edge areas, as seen in Figure 3.5 and
Figure 3.6. These figures also show the two extremes in form of the initially created image

and the result of the last degradation step.
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Figure 3.5 Synthesised forest mask, pixel size 12.5 m., after edge detection. Forest appear as green,
background as grey, edge pixels in red and brown, same legend as in Figure 3.1. Image extent 25%25

km, grid cell size 3*3 km.

Windows with no forest cover were excluded from the calculations of M and SqP, since these
indices are undefined when the number of forest pixels is zero. For all metrics and at each
resolution the results were plotted against the forest area. The most striking observation here
was the non-linear relation between the number of patches (per unit) and the total forest area
(calculated for the start-image with 12.5m resolution) within the grid cell, as illustrated in

Figure 3.7.
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Figure 3.6 Synthesised forest mask, pixel size 200 m, after edge detection. Colouring as for Figure 3.1.
After the initial inspection of the results, it also appeared that especially the SqP values were
related to the forest area. The indices are seen either to increase or decrease uniformly with
the coarsening of the image, but a dependence on the type of the input cells was found with
regard to forest cover percentage and to the number of patches. Regressions performed on the
averaged values of the three metrics and the resolution as expressed by pixel size (p) gave the
following results:

SqP = 0.8359 — 0.0013p, R* = 0.99

PPU = 1.66 — 0.00083p, R*= 0.64

M = 1.33 + 0.0222p, R* = 0.93
These scaling relations are characteristic of this particular landscape, or landscape type, and
can in principle be used for the prediction of metrics values at finer spatial resolutions from

values calculated at coarser ones.
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3.3.2 Synthetic images, metrics behaviour

For this part of the analysis, the values of the spatial metrics were grouped according to the
percentage of the area that is forested, in order to further investigate the behaviour of the
metrics with changing resolution, and to confirm or reject the assumption the they behave

differently with different forest cover proportions. The groups were selected based on visual

inspection of plots such as shown in Figure 3.7 and Figure 3.8, in such a way that they would

contain the same number of samples.

Patches Per Unit in 3*3km windows, pixel size 12.5m
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Figure 3.7 Patch density in synthetic forest map plotted against forest cover in each window. The

number of patches per unit peaks when about half of the grid cell is forest covered.
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Figure 3.8 Pixel size influence on Matheron index values, shown by per-window plots of M values

against forest cover for 25 and 200m grain sizes respectively.
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From Figure 3.9 and Figure 3.10, it appears that both the SqP and the PPU metrics have their
highest values when about half of the landscape is covered by forest. The decline in SqP with
increasing pixel size is due to the relatively larger amount of interior or non-edge pixels in
images at high spatial resolution, see also Figure 3.1. The fact that the values of SqP become
smaller with increasing pixel size, is in accordance with the less complex shapes observed at
lower resolutions, due to the "filtering out" of small patches with a high edge/area ratio,
narrow linear patches and "gaps" within forest patches. The SqP values are surprisingly
predictable under spatial degradation, thus the best metric for multi-scale comparisons, even

between 12.5m and 200m pixel size.

Squareness of Patches (SqP) index

Percentage of

landscape
forested (from
0.9 1 12.5 m pix size
08 | image)
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Figure 3.9 SqP as function of pixel size and forest cover for synthetic images. The values are grouped

by amount of forest cover in the windows for which they were calculated.
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Figure 3.10 PPU as function of pixel size and forest cover (grouping as above) for synthetic images.

Most patches are "lost" during the initial phase of pixel size degradation.
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The decline of the PPU values is strongest in the initial phase of degradation, probably due to
the effect of eliminating patches consisting of one or a few pixels. The values of the metrics
within each window at each resolution were regressed, along with the amount of forest cover
in the cell, and the correlation coefficients are shown in Table 3.2 and Table 3.3. The results

indicate that SqP is a more robust metric for comparison across scales.

SqP Area12.5 |12.5 25 50 100
Area12.5 |1

12.5 0.533924 |1

25 0.526287 [0.997263 |1

50 0.50381 0.990373 ]0.991971 |1

100 0.472774 ]0.970723 |0.974048 |0.987853 |1

200 0.343242 ]0.918761 |0.928397 |0.936453 |0.96009

Table 3.2 Correlation of the SqP metric derived

from different pixel sizes. n=53

PPU Area12.5 |12.5 25 50 100
Area12.5 |1

12.5 0.480305 |1

25 0.498294 10.912379 |1

50 0.460977 |0.726954 |0.805893 |1

100 0.42592  |0.589735 |0.690656 |0.877039 |1

200 0.350249 |0.372709 |0.358311 |0.668289 |0.764104

Table 3.3 Correlation of the PPU metric derived from different pixel sizes. n=64

The Matheron index, M was found to increase with increasing pixel size, again a consequence
of the higher perimeter to area ratio. The response curves in Figure 3.11 show that M assumes
its highest values when around half of the window is covered by forest, while no relation is
observed between the number of patches and the ordering of the curves in

Figure 3.12. These findings contrast with the better correlation between M and NP
(equivalent to PPU) than between M and the forested area, as presented in Table 3.4. This is
possibly due to the limited number of samples used in this study, where extreme values in one

window can seriously affect the average value for the (patch number or coverage) interval.

95



Matheron index value
I
1

125

50

pixel size

100

200

Matheron index profiles by forest cover area

Percentage of
landscape
forested (from
12.5 km pix
size image)

——2.21

—m—24.48
——48..53
—x—54..59
——60..71
——71.82

Figure 3.11. M values as function of pixel size and forest cover for synthetic images. The results were

grouped according to percentage of landscape forested in the window.
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Figure 3.12. M values as function of pixel size and number of patches for synthetic image. The results

were grouped according to the number of forest patches in the window (a number proportional to PPU).

Regression between the M values in each of the 53 windows with forest present (Table 3.4)

shows this measure to be stable with changing resolution, though not as well as the SqP index.

The findings of this part of the study indicate that it is possible to compare at least some
landscape structure measures derived from images of different resolution, assuming that the

behaviour of the sensors are simulated correctly by the spatial degradation.
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Matheron |Area NP 12.5 25 50 100
(12.5m)

Area 1

(12.5m)

NP 0.33494 |1

M(12.5m) |0.371358 |0.623638 |1

M(25m) 0.367724 |0.585393(0.993583 |1

M(50m) 0.324514 |0.559507 |0.978305 |0.990239 |1

M(100m) |0.287044 |0.519934 (0.930624 [0.951433 |0.965819 |1

M(200m) |0.066402 |0.491389 [0.809905 [0.83091 |0.858397 |0.923352

Table 3.4 Correlation between M derived at varying pixel sizes, forest cover as derived from the 12.5

m pixel size image and number of patches within each window. N=53.

Finally, it was found that the values of the spatial metrics correlate to each other in similar

ways at ‘coarse’ as at ‘fine’ resolutions when degraded, as shown in Table 3.5, while the

values get ‘decoupled’ from their relation to (initial) forest area. The M and the SqP metrics

are more correlated with each other than with the PPU metric, which is not surprising since

they both depend on edge-counts and area measures, while PPU values only depend on patch

counts.

25m 200m

grain Area12.5 | SqP25 PPU25 grain Area12.5 | SqP200 | PPU200
Area12.5 | 1 Area12.5 | 1

SqP25 0.560686 | 1 SqP200 | 0.33633 | 1

PPU25 0.343091 | 0.48181 |1 PPU200 | -0.1605 | 0.465624 | 1

M25 0.367724 | 0.888674 | 0.610049 M200 -0.03194 | 0.818425 | 0.555968

Table 3.5 Correlations between initial forest area and the three spatial metrics from synthetic images at

resolutions corresponding to imagery from the TM and WiFS sensors.

3.3.3 Satellite images, classification and mapping

It was attempted to classify the TM and the WiFS data with methods as similar as possible,

and the unsupervised classification yielding 40 classes was performed for each image. As

illustrated in Figure 3.13 and Figure 3.14, 19 of the spectral classes from the WiFS image and

also 19 out of 40 classes from the TM image were chosen to make up the forest masks, that

ware used in the further analysis. The three ‘possible forest classes’ indicated in Figure 3.13

were mostly found in the western part of the scene, which is dominated by agriculture, and
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may be olive groves or other plantations mistaken for forest. It was chosen to keep these
classes as forest in order to avoid fragmentation effects in the areas that was known to be
forest according to the GIS coverage, although the classification result obviously looked more
perforated than the synthesised coverage (e.g. compare Figure 3.15 with Figure 3.5). The

resulting forest mask images are shown in Figure 3.15.
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Figure 3.13 Scatter graph for Landsat TM band 3 and 4, with the resulting classes from unsupervised
classification (ISOCLASS routine of WinChips).
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Figure 3.14 Scatter graph for WiFS band 1 and 2, spectral clusters defined by unsupervised

classification.

Figure 3.15 Forest -non forest masks from classified images. To the left derived from classification of
WiFS image, pixel size 200m, over all forest cover 54.9 %. To the right as derived from classification

of Landsat TM image, pixel size 25 m, over all forest cover 44.9%. Extent of image area 50*50 km.

3.3.4 Satellite images, metrics derivation and display
In the next step of image analysis, the two classified images were processed using the

modified Fragstats program. As with the synthetic images, the window size was 3*3 km, so
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the maximum number of windows for which the indices could be calculated was 256. The

results can be displayed in map format, as illustrated in Figure 3.16 below.

WIFS (pixel size 200m) TM (pixel size 25 m)

High
8.50
8.00
750
7.00
8.50
8.00
5.50
500
450
400
3.50
3.00
250
200
150
1.00
050
0.00
Low

white cells = metric undefined

Figure 3.16 Spatial configuration of the values of the Matheron index, calculated from the forest mask

images shown in Figure 3.15.

Statistical analysis of the per-window values of the metrics showed that the values from the
two different sensors are not as well correlated as the synthesised images at similar
resolutions. The plots in Figure 3.17 show the relation between the values derived from TM
and WiFS data for the PPU and SqP metrics. Correlations were found between the Matheron
Index and the Square-Patch metric; as derived from Landsat TM and IRS - WiFS data
respectively (for M: R? = 0.237, for SqP: R* = 0.393) — for the PPU metric there was no
correlation between the values derived for the different sensors (R* = 0.04) — which indicates
that the landscape property of “having a certain number of patches per unit area’ is level (or

sensor) -specific and not scalable or possible to translate between resolutions.
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Figure 3.17 Comparison of metrics values between data sources. To the left the PPU values from TM

and WiFS respectively are plotted, note that the area unit is km?, which for WiFS data correspond to

only 25 pixels, thus the very low values compared to the TM data. To the right. SqP values, vague

trends are found in the relation between the values from the two sensors.

As a ‘verification’ of the reliability of the overall description of the forest distribution derived

from the two images, the forest area in each window was compared, Figure 3.18 shows a plot

of this relation. The bias towards a larger area being classified as forest is apparent, but the

overall relation is satisfactory, and thus it has been confirmed, that the low correlations

between the values of the spatial metrics owe to their response to scaling.
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Figure 3.18. Forest cover in windows with forest cover >0. The area estimates appear to be well in

accordance.

The Matheron index, as derived from the two image types, did not behave as well as expected

from the simulated images, as seen in Figure 3.19, left side. This is assumed to result from a

101




combination of differences in classification and scaling effects. It can also be attributed to the
effect of windows with only a few forest pixels, where their spatial organisation has a large
influence on the value of M. This assumption is confirmed by applying a forest cover mask to
exclude windows with less that 10 % forest cover in the TM image, which improves the
correlation coefficient to 0.467. In order to assess the amount of influence by scaling effects, a
forest mask image with pixel size 200 m was generated from the forest mask derived from
TM data at a pixel size of 25 m. The comparison of these two images (shown in Figure 3.19,
right side) produces a better correlation, although still far from what could be expected from
the synthesised images. A possible explanation to this ‘under-performance’ is that the
degradation processes applied in the described procedure (section 3.1) are not optimal.
Therefore a degradation process might be required which takes into account the influence of
sensor behaviour, such as point spread function and the spectral characteristics of the bands

used.

Finally, a ‘multi-spectral’ approach was tried in order to increase the information content of
the maps of spatial metrics. A possible output from a combination of the least correlated
metrics (found according to the methods described by Riitters e al (1995)) is shown in Figure
3.20. It is possible to distinguish different regions in terms of structural properties, although
guidelines for interpretation and possibly classification or regionalisation based on these

remain to be developed.
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Figure 3.19 To the left M derived from WiFS data with pixel size 200 m plotted against M derived

from TM data with pixel size 25 m. To the right M derived from WiFS data with pixel size 200 m

plotted against M derived from TM data degraded to pixel size 200 m.
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Figure 3.20 Spatial metric maps displayed together as different ‘channels’ in a false colour image. In

this example the indices calculated from the Landsat TM based forest-non-forest map. Cell size 3 km,

in a grid of 16*16 cells.
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3.4 Discussion and Conclusion

In this study, the Matheron index and the SqP metric are observed to change consistently with
the scale of observation, while PPU the metric changes in a more unpredictable way, so as an
indicator of fragmentation across scales, this metric must be used with caution. Nevertheless
trends are observed for all three metrics following grain size, and it is thus assumed that this
procedure of degradation of images, calculation and graphical display of metrics can be
improved for use in landscape structure assessment. The results obtained from degradation of
simulated images demonstrate that this relationship exists and has a potential for describing
landscape structure. The apparent increase in fragmentation as expressed by relative edge
length and the apparent decrease in fragmentation as expressed in number of patches are both
artefacts of the scaling process. The correlations found between the metrics as derived from
TM and WiFS images respectively are lower than the correlations found between the same
grain sizes in synthetic images, but the order is the same: SqP values are more consistent than

M values, which are again more consistent than the PPU values.

The differences in the values of the metrics investigated here underline the difficulties in
quantifying the concept of fragmentation, and confirm the assumption that landscape structure
will manifest itself in different ways at different scales of observation. Furthermore, the forest
distribution in the test area appears to be related to the topography of the landscape, thus
separate experiments should be performed in structurally different areas, in order to assess the

influence of the physical setting of the landscape.

Remote sensing provides synoptic images at different scales, potentially making it a powerful
tool for applications in multi-scale landscape analysis, including use as illustrations and maps
that highlight areas with a particular landscape structure, such as very fragmented or very
diverse patterns. Still, the users will have to deal with data from different sensors, often
recorded at different times, under different conditions, so it is not trivial to derive comparable

land cover maps - something crucial to the comparison of spatial indices.
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Assuming that the metrics investigated in this chapter are related to fragmentation processes
or the connectivity of the landscape elements (Mertens and Lambin 1997, Hargis et al 1998),
the analyses carried out here show that it is possible to use processed EO-data to assess
structural parameters of importance to forest ecology, and to compare them at different scales

and over time, supplying a structural dimension to forest monitoring and change detection.

The methods demonstrated here has potential for operational use, however before the moving
windows approach is applied to larger datasets, further assessment of sensitivity to data
structure and scaling effects must be carried out. Also more sophisticated though
computationally demanding metrics should be tested. Such work could include development
of weighted edge metrics, as well as a modified Matheron index to be used on images with
more that two land cover classes (Mead et a/ 1981, McGarigal and McComb 1995, Petit and
Burel 1997). The pre-processing (first of all classification) of EO data before metrics are
calculated could be improved by application of edge preserving smoothing, segmentation
and/or neural networks (Wilkinson 1996). For the interpretation of metrics values and their
relation to ecological processes, multiple regression of metrics such as the ones studied here
or other parameters describing ecological (and physical landscape) conditions should be
carried out. This will aid the understanding of what the indices depend on identification of
inter-relations and redundancies (Riitters et a/ 1995). The inclusion of indices derived from
classifications of aerial photos of the area (preferably at or below one meter resolution) could
aid in relating ground observations of forest structure to metrics derived from high- and

medium resolution satellite data (Pitt el al 1997, Petit and Burel 1997, Wulder 1998).

In the studies related to this thesis, the results presented here led to focusing of further studies
on the comparison of maps derived directly from satellite imagery with CORINE land cover
data, which are mostly based on vectorised, high-resolution satellite imagery. In the current,

limited study, ‘moving windows’ approach with square sub-landscapes was used for
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derivation of spatial metrics. Better alternatives may however be available in form of geo-
referenced polygons with the borders of watersheds or administrative units (Weber and Hall
2001, Vogt et at 2003) — to which the spatial properties as expressed in the various metrics
can be assigned. This seemed a promising way of addressing the MAUP, and thus a
combination of these two approaches was tested in subsequent studies, described in the

following chapter.
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