4 Comparison of Corine Land Cover and FMERS-
WIFS raster images for description of forest

structure and diversity over large areas

4.1 Introduction:

In the previous chapter, focus was on forest structure, and it was demonstrated how it is
possible to use spatial metrics from medium-resolution satellite images to predict the values of
the same metrics when derived from high-resolution images. The study area was in Umbria in
central Italy, and GIS-data from the same geographical window were used to analyse the
effects of scaling i.e. changing pixel size on the value of the metrics. An important finding
was that in order to quantify and compare the distribution of spatial properties over
landscapes, subsets of the particular landscapes can be analysed, and results represented in
geo-referenced map or table form. For the analyses, binary images were used — allowing
calculation of only structural parameters, whereas in this chapter thematic maps with a
number of forest classes are used — making it possible to calculate metrics of diversity and

patch numbers.

The purpose of the analyses carried out here is to evaluate the use of land cover data in raster
format for mapping of forest structure and composition over large areas'’, with intended use in
monitoring of ecological conditions and forest resource management. For such larger areas,
i.e. at national to continental scale, a need for methods to assess landscape structure and, as
part hereof, diversity has been identified, in order to supplement traditional forest area and
production statistics (Haines-Young and Chopping 1996, McCormick and Folving 1998,
Hausler et al 2000, Riitters et a/ 2000, Weber and Hall 2001). The spatial metrics were here
extracted by application of a moving-windows (M-W) method to data originating from high-
to medium-resolution satellite imagery. As part of the study, some software tools were

developed, that take categorical maps (in raster image form) as input and output quantitative

' The total extent of the area studied here being 350,000 km?, corresponding to areas for estimation of
epsilon and delta diversities, ref. Figure 2.2.
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information on such landscape parameters as fragmentation and diversity. The information is

contained in raster images format (through the rows and columns of a landscape metrics
matrix), which can be subjected to further statistical analysis for the entire image, selected
regions or strata. At the same time, ‘window size profiles’ or scalograms were used to

describe the scaling effects on the calculation of the chosen spatial metrics.

4.1.1 Large area forest mapping and M-W analyses

M-W methods are an obvious choice for extraction of large map-like sets/tables of spatial
metrics from raster-format land-cover maps, as they allow comparison of spatial metrics for
various landscapes (O’Neill et al 1996, Schumaker 1996, Saura and Millan-Martinez 2001),
However, the interpretation of the outputs is not always straightforward (as discussed in detail
by McGarigal and Marks 1995, O’Neill et al 1996, Haines-Young and Chopping 1996, EU-
DG AGRI and others 2000, Remmel and Csilag 2002). In this chapter, the challenges that
accompany selection of the central parameter window size will be illustrated and discussed.
The task is, expressed in landscape ecological terms (Forman and Godron 1986, McGarigal
and Marks 1995), to find the relevant extent of the sub-landscapes for which the different
spatial metrics should be derived and used. This is primarily done by modifying the size of the
‘moving window’. The MW approach with optional overlap is illustrated in Figure 4.8, below.
As stated above, the outputs from MW-analysis themselves can be used as maps illustrating

e.g. forest structure.

Some research and pilot projects have already been carried out, in which land cover maps and
MW techniques are used to assess forest and landscape structure, even at continental to global
level. In a report produced for the EU’s general directorate for Agriculture, with the title
“From Land Cover to Landscape Diversity in the European Union”, a group of researchers
investigated the use of CORINE land cover (CLC) data for assessment of landscape diversity

with the use of M-W and per-region methods (EU, DG AGRI and others 2000). The
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methodology has later on been used for development of “Agri-environmental indicators” at
EU level (EU-DG AGRI and others 2000, Gallego 2002). As a contribution to these studies,
Eiden et al (2000) assessed different types of reference units for appropriate retrieval of
landscape metrics, including administrative regions, German “Naturrdumliche Einheiten”
(landscape units) and French “Region Agricole” (agricultural regions) as well as a simple M-
W approach with window sizes at 20, 40, 60 and 80km and 50% overlap between each
window step to extract values of Shannon’s Diversity index . They concluded that it was
possible to delimit “hard core” zones of diversity or homogeneity of the European territory. At
20km window size, it was possible to identify region specific properties of the structural
indicators, while at 80km window size, regional differences were smoothed out and only the
strongest features remained. To produce a clearer image, the M-W results were re-sampled to

a 2km grid, using bilinear interpolation.

At a global level, Riitters et al (2000) used 1-km resolution land-cover maps for analysis of
forest fragmentation world wide'', and extracted spatial information for windows ranging
from 9 x 9 pixels, termed “small” scale to 243 x 243 pixels, termed “large” scale. The
information on pixel numbers and adjacency was then used to characterize the fragmentation
around each forested pixel. The result of the analysis was reported as a kind of thematic map,
with pixels assigned to a certain ‘fragmentation class’. This approach is rather subjective,
although the output maps are illustrative and provide a useful overview of the selected
structural parameters. It is worth noting, that as window sizes increased, forest areas shifted
from being characterised as interior, perforated and undetermined into the types edge,
transitional and patch. Furthermore, more fragmentation was detected as the number of
included forest types increased, especially in areas where savannah is dominant. This is one
among many examples of the influence on metrics values from the definition of forest in the

mapping phase.

" This study is also presented in section 2.3.4 about measurement of fragmentation.
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The European Environment Agency (EEA) has conducted a study of how forest in Europe is
fragmented by transportation networks (EEA 2000)"2. In this study CLC data were used,
aggregated to 1*1 km grids — thus the forest patches were defined at a different scale from the
original data. The results were clear: fragmentation measured as ‘average size of non-
fragmented land parcels’ was highest (i.e. smallest parcel sizes found) in highly urbanised
countries like Belgium and Luxemburg and lowest (largest parcel sizes) in the sparsely
populated countries Finland and Sweden, which have large areas of continuous forest. This
last study adopted a more traditional GIS-method, in reporting the results a country level —
which makes sense as the desired output is indicators for the included countries. O’Neill et a/
(1996) analysed landscape patterns in the South-eastern USA using classified NOAA AVHRR
images and metrics calculated for hexagons of 640 km” each. They also used compositional
(Dominance) and shape (Shape Complexity) metrics and found that in order to get meaningful
results, the grain should be 2 to 5 times smaller than the features of interest (i.e. forest or
landscape patches); meanwhile the sample area or window must be 2 to 5 times larger than the

patches in order to get representative metric values.

Medium resolution forest maps covering all or most of Europe have been constructed
independently in at least two instances. During the FMERS project, the Technical Research
Centre of Finland (VTT) led a consortium, which produced forest maps at a resolution of
200m for large parts of the continent, based on data from the satellites/sensors of the types
Spot, Landsat, IRS-WiFS, Resurs MSU-SK, and ERS SAR. The purpose of this study was
mostly method development (Hime et al 1999). Later on, another project concerned with
creation of a pan-European forest map, also based on WiFS data was carried out by the

Munich-based company GAF, on a similar contract to SAI. This project has demonstrated the

2 The indicator fact sheet is available at
http://themes.eea.eu.int/Sectors_and_activities/transport/indicators/
consequences/fragmentation/TERM 2002 06 EUAC Fragmentation.pdf Accessed 12/8 2003.
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feasibility of creating a coherent and reliable forest map, which covers all of Europe, and the

resulting map is available for later analysis'> (GAF 2001).

The existence of the above-mentioned data sets, methodologies and results together provide
the potential for analysis and mapping of forest structure in Europe, based on spatial metrics
and land cover data. However, a need for methods to assess the robustness and
flexibility/transferability of the various proposed metrics still exists. In this chapter methods
for comparison of metrics derived in multiple matching geographical windows are proposed,

and their use demonstrated on a data set consisting of two forest maps in raster image format.

4.2 Objectives

The main objective of this chapter is to compare the spatial metrics that result from applying
similar methods of calculation to land-cover data sets available at different thematic and
spatial resolutions. The goals are

(1) Development of new spatial metrics, particularly suited for description of forest
structure and diversity over large areas and/or recommendations for the use of
existing ones.

(i1) To find the optimal window size for display and reporting of landscape spatial
metrics.

(iii) To test the robustness of the metrics through their use with two different data
sources that provide forest maps of the same area.

(iv) Furthermore, the aim is to examine and compare scaling effects as expressed by
window size on the values of various spatial metrics. This will be done through
comparison of the values of the different spatial metrics, as well as the variability
and autocorrelation against window size for each metric, and calculating the

correlation coefficients for these relations.

" On request to the JRC which managed the project on behalf of the EU commission.
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v) Also of interest is the ‘internal’ correlations between values of different metrics
(from the same input image) at a fixed window size, and comparison of these
‘patterns of correlation’ at different window sizes

(vi) To find out how well one land cover data set can substitute the other for mapping
of structural features. This will be assessed and shown through correlations
between values from the two different input types at similar window sizes
(representing identical geographical areas).

(vii)  Finally, catchment/watershed information and regional/administrative borders as
vector GIS data are used for reporting and summarising metrics values, thus
addressing the MAUP, which is an issue of concern in Remote Sensing and GIS,
especially in relation to (the use of) spatial metrics. Though the metrics values are
known to vary with window size, their relative values in different, separate
regions might co-vary with window size, to yield the same order or ranking of the
regions. This property is also expected for the two different data sets at similar
window sizes.

Throughout this chapter, different types of scalograms will be used as tools to describe

landscape structure and to compare maps and landscapes. At the end of the chapter, the

MAUP addressed through different regionalisation approaches. It can however be argued

that the use of M-Ws itself is an attempt to overcome the MAUP (Marceau et a/ 1994,

Marceau 1999a and b, Marceau and Hay 1999a).

4.3 Data

In this section, the test area for this study is briefly presented, then the different data types
used are described as well as the approaches to convert them to compatible forest maps.
4.3.1 Study area

In order to address the objectives stated above, forest maps of the study area were extracted
from CLC and FMERS data respectively. The area investigated in this study is shown in

Figure 4.1.
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Figure 4.1 The selected subset, as shown by the red rectangle, covering Northern Italy and small parts

of France, Switzerland and Slovenia. Dominant natural features are the Alpine and Apennine mountain

chains and the Po river valley. The spatial extent of the subset is 500 by 700 km. To the left location on

a political map with relief, to the right forest strata from the FIRS project (Kennedy ez al 1997)"*. Forest
strata included are Mediterranean region (orange), the warm/moderate temperate region (light brown)

and the Alpine and Apennine orobioms (elevational communities and associations - dark brown).
This area contains a variety of different landscape- and forest types, and includes the area in
Umbria that was covered in the previous chapter. Other criteria for the selection of this test
area was the presence of different forest and landscape types, and the availability of good
quality forest maps. The image files are of size up to 5000*7000 pixels (at 100m cell size),
large enough to produce statistically significant results even when the number of output cells
decreases following the use of larger window sizes. The types of forest diversity under
investigation are thus epsilon diversity (broad region) in the inventory domain and delta

(between landscapes) diversity in the differentiation domain, as defined in section 2.1.4.

4.3.2 Raster data

43.2.1 WiFS — FMERS data

The forest map derived ‘directly’ from EO data used here is based on a mosaic of WiFS
images from the IRS 1-C satellite, these are the same images that were used in chapter 3 — the

project is introduced in section 4.1.1. The map was produced by VVT-Finland on contract to

' The (sub)project web site is at http://www.vtt.fi/tte/research/tte1/tte14/proj/firs/found 1 .html, accessed
25/4 2004
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SAL and the steps of the image preparation and processing are described in Héme et a/
(1999), for spectral properties etc. refer section 3.2. The aim of that study was in particular to
develop a fast, reliable and cost-efficient method for mapping and monitoring of forest at the
continental level. The ‘demonstration’ forest map, that was created, has the following classes,
defined in accordance with the FIRS nomenclature system (Kennedy et al 1997):

Coniferous

Broadleaved Deciduous
Broadleaved Evergreen

Mixed forest

Other Wooded Land Coniferous
Other Wooded Land Broadleaved
Other Land.

A A o

The resolution of the original images is 188m pixel size, the mosaic was re-sampled to a

pixel size of 200m. The resulting, simplified forest map is shown in Figure 4.2.

T e -3 o ﬁ-

i No data

Bl Coniferous

I Broadleaved Deciduous
Broadl. Evergreen

P Mixed

' OWL Coniferous *
OWL Broadleaved
Other Land

Figure 4.2 FMERS forest map for area of interest, vector layer showing NUTS-level 2 regions.

4.3.2.2 CORINE land cover data

Data from the CLC (described in section 2.3.2) are used here in the form of raster images with

a pixel size of 100m. The data were extracted from the CLC database in February 2001
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(Liberta 2001). The information in the database is based on Landsat TM and SPOT HRV
imagery, which has been digitised manually, with a minimum patch (polygon) size of 25 ha.
CLC data are interesting because they are regularly updated and standardised between the
individual countries and producers (with next updated version, termed CLC2000 expected
early 2004" ). This makes CLC data useful for monitoring purposes and comparisons across
Europe (EU, DG AGRI and others 2000). The three ‘pure’ forest classes from CLC were
included in the present analysis, along with the classes Agro-forest areas, Sclerophyllous
Vegetation and Transition woodland-scrub. The agro-forest class was included as forest, since
it is defined as Annual crops or grazing land under the wooded cover of forestry species
(Bossard et al 2000). This land-cover class includes areas of forest trees mixed with fruit and
olive trees. The CLC image data were then re-classified to provide a forest map similar to the
WiFS, though direct comparison is complicated by different nomenclatures, as seen from
Table 4.1, below. Figure 4.3 shows an example of how the data are aggregated to a forest map

and Figure 4.4 shows the resulting CLC-based forest map for the study area.

Figure 4.3 Subsets of CLC and FMERS maps located in Umbria and Toscana, Area extent 42*50 km,

with the Trasimeno lake and regional capital Perugia at the bottom. From left to right: Original CLC
map with all possible land cover classes, map with only the forest classes (both pixel size 100m) and

FMERS map of same area (pixel size 200m).

' Regular updates on mapping and availability status are provided at
http://terrestrial.eionet.eu.int/CLC2000
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Figure 4.4 CLC image for the area of interest, after re-classification to forest map.

CORINE FMERS
LC class: Description: | Number Description
0 Not inventoried | 0 No data
244 Agro-forest 6 OWL
areas Broadleaved
3.1.1 Broad Leaved |2 Broad Leaved
Forest Deciduous
3.1.2 Coniferous 1 Coniferous
Forest
3.1.3 Mixed Forest |4 Mixed
3.2.3 Sclerophyllous |3 Broadleaved
Vegetaion Evergreen
3.24 Transition 6 OWL
woodland- Broadleaved
scrub
Not defined 5 OWL
Coniferous

Table 4.1 Matching CORINE and FMERS forest cover classes for the current study.

4.3.2.3 Comparison of derived forest maps

The definition of forest can have a large influence on the types and degree of fragmentation
detected in any survey (Riitters et a/ 2000). It is thus no trivial task to select and possibly re-

classify the themes that define forest, for studies of forest structure like this, where it is a
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central task to compare forest maps derived from satellite imagery with land cover maps made

for other purposes'®.

The two data sets are both satellite based and have more or less the same thematic resolution.
It is however worth noticing that a partly manually delineated land cover databases like the
CORINE have a very low temporal resolution, compared to maps based on spectral
classification algorithms, which can now be updated more or less automatically. The land
surface covered by the selection is approximately 195,150 km?, of which 34.4% is forest
according to the CLC classification and 37% according to the FMERS classification. The

distribution of the separate classes is shown in Table 4.2.

CLC FMERS
) percentage of|percentage ) percentage of percentage
LCtype | pixels forest areas |of land area LCtype | pixels forest areas of land
0| 28314165|N/A N/A 0| 6944905/N/A N/Aarea
1| 848669 12.69% 4.35% 11 482593 26.74% 9.89%
2| 3792008 56.72% 19.43% 2| 574189 31.81% 11.77%
3| 274834 4.11% 1.41% 3 7266 0.40% 0.15%
4/ 911814 13.64% 4.67% 4/ 296940 16.45% 6.09%
5 0 0.00% 0.00% 5 87400 4.84% 1.79%
6| 858510 12.84% 4.40% 6| 356707 19.76% 7.31%
TOTAL
FOREST| 6685835 100.00% 34.26% 1805095 100.00% 37.00%

Table 4.2 Distribution of land cover classes in the two data sets.

A direct comparison of the two data sets is done using a “confusion matrix” at per-pixel level
for similar pixel sizes and calculating the Kappa statistics (Congalton and Green 1999, p 45
ff). In order to compare the input data from CLC and FMERS pixel-to-pixel, the CLC image
was degraded to 200m pixel size, by assigning the dominant land cover type in a 2*2 pixel
window to the pixel in the output window. Table 4.3 shows the resulting co-occurrence-

matrix, on which the Kappa statistics is based.

'® As in this case the CLC database that has been made for environmental assessment and management
in general.
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0 1 2 3 4 6|Total
0| 6420421 67101 297683 25606 53365 80729 6944905
1| 186382 84144 104595 15653 61153 30666/ 482593
2| 198056 20476| 285787 2267 43671 23932 574189
3 4350 332 756 1230 340 258 7266
4/ 119442 13337 114982 10132 24782 14265 296940
5 47552 10360 14137 2435 5611 7305 87400
6] 219627 14461 79456 7255 16000 19908 356707
Total 7195830, 210211 897396 64578 204922 177063 8750000

Table 4.3 Co-occurrence of pixel values in FMERS and CORINE land cover maps. The CORINE data

were re-sampled to 200m pixel size. CORINE data are in columns and FMERS data in rows.

The Kappa coefficient was calculated using IDRISI and used as accuracy measure. It assumes

acceptable values for categories 1 and 2, coniferous and broadleaved evergreen, which are

also the most common forest types in the images. These land cover types also have the lowest

error coefficients. The overall Kappa for this comparison is as low as 0.095. It must however

be noted that when comparing forest-non-forest maps from the two image types, as illustrated

in Figure 4.5, below, the overall Kappa increases to 0.5218. This, along with visual inspection

of the maps, clearly shows that a pixel-to-pixel comparison is not possible or meaningless,

and instead we have to test whether the spatial metrics at different cell sizes are appropriate.
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Figure 4.5 Cross-tabulated image from CORINE and FMERS forest masks: background pixels are
-, pixels only in the FMERS map are BB, pixels only in the CORINE map are yellow and pixels in
both forest maps are -

The preparation of the forest-masks for parameter extraction provided an interesting insight in
the structure of the CLC and FMERS data, as illustrated in Figure 4.7, where the CLC data
maps more coherent riparian forest, a feature that is typically hard to separate and eventually
is ‘lost’ in solely spectral classifications like the one performed in the production of the

FMERS map.

4.3.2.4 Digital elevation model

The digital elevation model (DEM) used here is based on the data set that was assembled and
used for development of a pan-European database of rivers, lakes and catchments (Vogt et al
2002). The current DEM is an 8-bit version of the file that was used for deriving the river-
network for Italy in the initial part of the project, this means that the altitude resolution is 20m
and the grid cell size is 250m. The DEM is shown with a typical colour legend in Figure 4.6

below. For use with the different output maps of spatial metrics, the DEM was re-sampled to
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cell sizes to the images, using the image-rectification routine of WinChips (bi-linear

interpolation), with resulting average elevation values.

4.3.3 Vector data

Ancillary vector data were used to extract information from the metrics images, using the
statistical functionalities of WinChips. This was done in order to summarise and evaluate the
evenly distributed (gridded) metrics values. The GIS data used include the watersheds from
level 1 to 6 for Italy from the project described above, their shape and extent is shown in
Figure 4.6 below. A subset of catchments were extracted for the upper Po valley and for the
entire Tevere (the Tiber) catchment, supplemented with two 4™ order catchments in Toscana.
A set of polygon layers with the NUTS (Nomenclature of Territorial Units for Statistics)
administrative regions were also used, they were made available from Eurostat'’, in the Corine
projection. From this database, the Italian regions (‘regioni’ = NUTS-level 2) were extracted
and used for derivation of average metrics values within these. The CLC dataset with 100m
pixels, together with the NUTS-coverage were used to make a base-map showing land
surfaces and excluding only open sea. This base-map has been re-sampled to various pixel
sizes, and these derived maps have been used as background image for illustrative purposes

throughout the project.

' Description and interactive maps at:
http://europa.eu.int/comm/eurostat/ramon/nuts’home_regions_en.html (accessed 28/12 2003)
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Figure 4.6 Digital Elevation Model of Italy. To the left full extent with 4st to 6rd order catchments —
there is just one 6th order catchment: the Po river basin with tributaries. To the right a subset with the

Umbria region (borders as red lines), overlaid by 2nd and 3rd order catchments, extent 140*150 km.

4.4 Methods

In this section, first the intended outputs in terms of spatial metrics are listed and discussed,
then the practical image processing and statistical approaches for how to derived them from

the input data set are presented.

4.4.1 Selection and definition of spatial metrics
The metrics selected for this study are the same as in previous chapter, supplemented by
metrics of cover proportion and diversity. The types of structural metrics calculated are:
- cover (percentage), total forest and for each class
- percentage of edge pixels, of total number of pixels in window
- a simple edge index: proportion of edge pixels to number of pixels in actual class
- the Matheron (M) index, for each class and for combined forest layers
- the Square Patch index (SqP) — for forest-non forest
- Patches Per Unit area (PPU), both following Frohn’s definition and a modified,

‘normalised’ version that accounts for changing window sizes.
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These last three are described in section 2.3.4. The edge pixel percentages and proportions
area used here only as intermediate steps to get to the M and SqP metrics and for development
and testing purposes, though they have the potential to be used as indicators in their own

right.

The diversity metrics used are:

- Number of class types (richness)

- Simpson’s diversity

- Shannon’s diversity (Entropy)
The richness metric is the simplest possible measure of diversity, and has the advantage of
being easily understood and easily implemented. Simpson’s diversity SIDI, which expresses
the degree to which one or more classes dominate, is defined as follow (McGarigal and Marks

1995):
n 2
ﬂm:zg
i=1

Where P; expresses the proportion of the entire landscape occupied by class 7, the different
values of P; should sum to 1 for each landscape/subset. In this study 1-SIDI is used for
reporting the metrics values, in order to have the highest values for the smallest amount of
dominance, i.e. for the landscapes with largest evenness between classes. Then we have
maximum value of SIDI,,,, for P1=P2=... Pn=1/n., and

SIDLyex = 1-1/n .

Shannon’s diversity index, also known as the Shannon-Weaver or Shannon-Wiener
information index (Whittaker 1972), is based on information theory, expresses the
‘bandwidth’ needed for description of a system and thus the ‘disorder’ or distance from

predictability of it (McGarigal and Marks 1995). The index defined as:

supr=-Y (p*in p)
i=1
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The maximum value of the SHDI for a landscape with n classes is simply In(n), and the
minimum values is 0 for the case when the landscape contains only one patch type (no
diversity). These two diversity metrics are very commonly used in the ecological literature,
and thus it is found to be of interest to look closer into their behaviour with changing pixel-

and window size.

In this study, it was chosen not to include the pixels that represent background in the diversity
calculations, since the phenomenon under study is the structure of the forests and the diversity
of the forest types. Including background pixels would give a measure of landscape diversity
rather than forest diversity, and then it could be argued that the aggregation (see section
2.3.3.3) should not have taken place, and the various natural and agricultural land cover types
preserved as separate classes. This issue is addressed in the following chapter, when CLC and
high-resolution land use data are used, compared and discussed in more detail. Thus, as part
of the preparation of the images, they were processed so that only the forest classes of interest
were preserved, and any other class set to zero (i.e. constituting the ‘background class’), as

seen in Figure 4.2 and Figure 4.4.

Concerning the structural metric Patches per unit area (PPU), based on the count of number of
patches in the window, there is a problem of bias towards higher values for small window
sizes, since if any part of a larger coherent forest is present in the window, one patch will
already be counted there. In other words, the sampling method acts like a “cookie cutter”
(O’Neill et al 1996, p. 174). For instance, if 10*10 km of continuous forest cover is analysed
with 1*1 km windows it will result in 100 output cells with 1 patch per km?, and from a 10*10
km window, the result will be one output cell with 0.01 patch per km?. The present study
investigate whether it is possible to remove — completely or partly - this effect of window size,
especially for densely forested areas (where a low number of separate patches can be

expected). This is done with PPU-Normalised (PPUN), defined as:
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NP -1 1

PPUN =

Where A, is the area of the smallest window used in the current analysis. The last part of the
expression is included in order to avoid having the values of PPUN approach zero for large
windows, thus PPUN will be one for the case of just one patch present at all sizes, with values
approaching one for larger window sizes with more patches present — as examplified in Table
4.4. After inspection of the results from the first tentative runs of the patch-counting script, it
was chosen also to include the number of ‘background patches’ as a spatial metric, for the
reason that a patch of non-forest surrounded by forest is an expression of fragmentation and
perforation of the forest cover in the area/window of interest. It is similar to but much simpler
than metrics of lacunarity (Plotnick et a/ 1993). The PPUN_B value, as it will hereafter be
called, is easily derived, as the patch counting script anyway will deliver the number of
patches in the window of analysis for each land-cover class in the input image. It is calculated

in the same way as the PPUN metric.

Area No. Of patches |PPU PPUN No. Of patches |PPU PPUN
1 1 1 1 5 5 5
10 1 0.1 1 5 0.5 1.4
100 1 0.01 1 5 0.05 1.04
1000 1 0.001 1 5 0.005 1.004
1 2 2 2 10 10 10
10 2 0.2 1.1 10 1 1.9
100 2 0.02 1.01 10 0.1 1.09
1000 2 0.002 1.001 10 0.01 1.009

Table 4.4 Theoretical values of PPU and PPUN for varying window sizes and number of patches.

For the regression analysis performed in order to find the agreement between the different

metrics, the ‘original’ patch count metrics are used, i.e. the NP values from the M-W results.

This is possible due to the nature of the transformations from NP to PPUN and PPUN_B, and

because the regressions only take place for one window size at a time, and as such not are

affected by the transformations.
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When average values of spatial metrics are reported from the different output (image) files,
only those output cell which represent forest cover of one per cent or more are included, the
others are masked out. When values for the two different data sources are compared, the
criterion for inclusion is that one of the results should represent a window with a forest cover
of one per cent or more. In practical terms, this is done through constructing of a binary forest
cover map, using the arithmetic functionality of WinChips. Such non-forest cells are typically
found in river basins with intense agricultural activity and to a lesser extent in mountain areas
above the tree line. This means that three types of forest mask are applied: one for each of the
map types and one for analyses where they are combined or compared — in this case the “OR”
image from the right hand side of Figure 4.7 below. A consequence of this masking approach
is that the average forest cover values reported for entire images and selected regions will be
higher than the actual forest cover as percentage of the entire land area, since output cells with

no or very little forest are excluded.

The preparation of the forest-masks for parameter extraction provided an interesting insight in
the structure of the CLC and FMERS data, as illustrated in Figure 4.7, where the CLC data
has more and coherent riparian forest, a feature that is typically hard to separate and

eventually lost in solely spectral classifications like for the FMERS map.
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Figure 4.7 An example of how maps of forest presence are combined for masking in extraction of

statistical parameters. The subset used here is the upper part of the Po river basin, for a cell size of
1200m. Map A is based on CLC and Map B on FMERS data. Note that the agreement between these
two data sets improves as the cells become larger (and there are fewer cells with no forest), see for

instance Table 4.19, page 154, row ‘Cover’.

4.4.2 Implementation of Moving Windows and analysis of outputs

The ‘moving window’ calculations were carried out using IDL scripts (Research Systems Inc.
1999), that allow modification of the window and the step size, as part of which overlap
between windows is possible. The principles of M-W analyses as implemented here and the
basic terms referred to throughout the text are illustrated in Figure 4.8 below. The main
difference between this implementation and the one used in for instance Fragstats for
Windows is that here, the user can define not only the extent (size) of the window, but also the
step and thus the output cell size which determines the grain size of the output image. These
window sizes and steps are implemented as parameters of for-next loops that operate on

image-matrices in the various IDL-scripts used here (Appendix 1).
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Figure 4.8 Moving windows concepts with and without overlap.

As part of the processing chain, which is only partly automated, simple spatial statistics such
as cover proportion and number of land-cover classes are calculated. This information can
also be used for inspection of the input data and visualisation of basic landscape properties
(see for instance Figure 4.10 on page 134). The diversity metrics are based on histograms of
pixel values collected for each window, the fragmentation metrics are based on per-window
counts of edges, both for each land-cover class and between forest and non-forest pixels. As
an aid for the further presentation of the types of calculations and files used in this study, a

sketch of the way from input data to the various types of results has been made, Figure 4.9.
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Figure 4.9 Simplified flowchart showing how the results presented below are derived. The boxes

represent final or temporal data (to be) stored as files.
The output images are easily geo-referenced. The coordinates for the upper left corner of the
output images depend on the parameter for the MW-calculations, in the following way:
Pixel size = step
UL X,u=UL X, + ((size-step)/2)
UL You=UL Y- ((size-step)/2)

The number of pixels in the output image is determined by the equations:

incolumns — wsize + wstep

Outcolumns = INT. EGER( j for the columns (X-size) and

wstep

inrows — wsize + wstep

Outrows = INTE GER( ] for the rows (Y-size).

wstep

These numbers are needed for correct import and geo-referencing of the resulting maps, so
they for instance can be used with vector data in a GIS. In this implementation of the method,
this is achieved by importing the outputs (text files) into the image processing software and

assigning the correct pixel sizes and edge coordinates. All image data have ‘UTM-style’
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lower-left coordinate systems, in the present case the CORINE-projection is used, since the

CLC maps serve as reference for the entire dataset.

IDL Scripts used include (scripts are listed in Appendix 1):
a) Calculation of Cover, Diversity and Fragmentations metrics
b) Counting of patches, where each land cover class is processed separately.
c) Degradation of images, either
- binary (forest-non-forest maps), possibly with variable threshold values, in order to
keep the same cover percentage as in the input image
- aggregation with possible weighting for land cover classes of different interest/

18
“value”

For each dataset spatial metrics were calculated for window sizes ranging from 1200m to
19200m, corresponding to windows of 6*6 to 96*96 (9216) pixels for the FMERS map and of
12*12 to 192*192 (36864) pixels for the CLC based forest map. Further on, the two data
types are compared at window level, i.e. between output cells representing the groups of
pixels, that cover the same part of the forested landscape. This is done by finding the
correlation coefficient for the two variables or Mcrc and Mgygrs (or in standard terms y; and
;) representing the spatial metrics from the two data sources. The number of observations 7 is
the number of windows/output cells where forest is present — with the criterion that at least

one of the land cover images should have a forest cover of one percent.

For a comparison of the M-W results for the entire maps with results from previously defined
regions that form subsets of the test area, vector data were used to extract metrics values for
catchments as well as administrative region (through the creation of WinChips statistics files,

see Figure 4.9). The spatial metrics values are reported at regional level (highest level of

'8 Note that simple averaging of pixel values, as applied to photos or satellite images will not work on
categorical maps.
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Italian administrative regions) and for the catchments of highest orders, i.e. of largest spatial

extent

4.42.1 Tests for significance of results

As test for the significance of the correlations, a simple ‘rule of thumb’ is used, namely that
for large values of n, the minimum (absolute) value needed to attain significance is defined as

(from Rogerson 2001, p. 94):

rcrit = %\/;

.. when 0=0.05. For this type of analysis a “combined forest mask” is used, where the
criterion for a pixel to be included is that forest cover is > 1% in either the CLC or the
FMERS forest map — based on the cover value calculated at the given window size. These
combined, all inclusive forest masks are also used for extraction of (average) metrics values

for administrative regions and watersheds.

As an alternative to the pixel-to-pixel approach described above, and in order to test whether
the two different data sources give the same general picture of regional forest structure, the
areas (admin. regions and catchments) are ranked according to the average values of each
metric and compared using Spearman’s Rank Correlation Coefficient (Rogerson 2001, pp 94-
95). The results from these tests contribute to understanding which metrics are sufficiently
robust to be used with different image sources and over large areas. The ranking approach also
helps illustrate in which geographical areas or zones agreement of metrics values are found,
and in which areas the differences are — and whether these ‘problematic’ areas are similar or

different for metrics assessed in this study.

4.4.3 Local variance and autocorrelation

The concepts of variability and autocorrelation are of interest because they describe not only

the structure (clustered or scattered landscape elements and derived spatial metrics) but also
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the information content in the output ‘maps’. For the current study focusing on mapping of

spatial structure and diversity, it is assumed that higher local variability means that more

information is present in the outputs (refer section 2.3.3). This information is potentially used

for display of landscape properties and ultimately prediction of biological diversity. The
spatial variances of the resulting ‘spatial metric maps’ are calculated in two ways: local

standard deviation and autocorrelation expressed through Moran’s I.

4.4.3.1 Local variance approach

The approach to find the local variance follows the methodology described by Woodcock and
Strahler (1987), for assessment of characteristic scales in remotely sensed images, insofar as
the extraction of spatial metrics can be seen as applying a low-pass filter, in the same way that

remote sensing imagery is degraded to lower resolutions, ref. Wu et a/ (2000).

Here, the local standard deviation (stdv.) of the metrics values is found under a mask defined
by (percentage of forest cover => 1), with edge pixels excluded, as these are set to zero values
during calculation of variance (as during filter operations in general).
The steps in the creation of variance statistics at each extent are:
- Create mask from pixels with cover >= 1% AND not along edges
- Calculate stdv. of pixel values in 3*3 window around each pixels
- Calculate mean and max. value of stdv. from under the mask
- Calculate coefficient of variance, based on average and st.dev.values for each metric
and data source, this gives a nicely normalised expression of the local variance of the
metric.

The results are reported in table and graphical form.
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4.4.3.2 Autocorrelation approach

The Moran’s I (MI) measure of spatial autocorrelation is derived using Idrisi (Eastman 1997),

where it is implemented as a statistical function. It is defined as follows:
ny Y w.(y, =, -y
i J

(Y, Y w0, -5

Ml =

where n are the number of regions/pixels/windows, Wj; is a measure of proximity and y;and y;
are the metrics from the different data sets. Similar to a correlation coefficient, MI assumes
values from —1 to 1, where values near | indicate a strong spatial pattern (high values near
each other, low values near each other), values around 0 indicate no particular pattern (random
distribution) and values near —1 indicate a case where high values are located near low values
(this is rarely seen and geographical data normally never have values of MI below 0). MI can
also be seen as a simple measure of self-similarity or the potential of using cell values to

predict the value of neighbouring cells in raster images (Costanza and Maxwell 1994).

4.4.4 Masking and Forest Concentration

The work with image masks at different output cell sizes have led to proposing a new spatial
metric particularly for use with MW methods: a measure of forest concentration (FC) or
landscape concentration. It stems from the observation of characteristic values in selected
regions of the forest cover percentage for respectively the entire landscape and under the
‘forest presence’ mask. When the value under the forest mask is high relatively to the entire
landscape it means that the forest is concentrated in a limited number of output cells, whereas
when the two values are nearly similar the forest cover must be spread out over the

image/region of interest. The metric is defined:

FC - Cover _mask 1
Cover _ landscape
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The theoretical values range from 0 when the two cover metrics are similar (the forest
presence mask covers the entire region) to near infinite, depending on the size of the output
cells relative to the output image. For the same input image the values of FC will decrease
with increasing output cell size, as the chance of finding windows with no forest will
decrease, but also the shape of the resulting FC-profiles might provide additional information
on the structure of forest (or other element of interest) in the region. To derive a FC-profile,

MW analysis with a number of different window sizes is required.

4.5 Results

The results of image processing and subsequent statistical analysis are presented along the
lines laid out in the objectives of this chapter. This section thus begins with a presentation of
and some comments on the values of the metrics per se and in relation to window sizes, then
the spatial structure of the output ‘maps’ are looked at, followed by examination of the
regressions between pairs of metrics from the two data sources for a range of window sizes.
After that values of metrics from different spatial units are compared (administrative regions
vs. river catchments) and finally, the visual appearance of the metrics (maps), interpretation

and applications for statistical reporting and use as indicators are discussed.

Figure 4.10, below shows an example of an immediate result of the application of M-Ws to
the two data sets, where the resulting text files have been imported and visualised as grids
using the Surfer software (Keckler 1997) , following the flow outlined in Figure 4.9. Already
this visualisation of a relatively simple metric, the number of land cover classes gives the
impression of not only where forest is found but also where environmental conditions allow
several different forest types to be found within a limited geographical area, in this case within
squares of 4.8%4.8 kilometres. The apparent broad agreement between the outputs for the two

different map data sources is tested statistically in section 4.5.4.
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Number of observed Land Cover classes in landscape windows
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Figure 4.10 Land cover “richness”, i.e. count of different land cover types present within windows of
23km?’, figure created in Surfer for windows, using text file outputs from IDL script processing of input

images.

4.5.1 Response of metrics to window size

For each output map of the specific spatial metric for each of the datasets the average value
was calculated — though only for cells/pixels with a forest cover fraction >= 1%. In Figure
4.11, these values are plotted against the size of the moving window. In order to make the
metrics of forest cover fit in the graph, they have been divided by 100, resulting in fraction

values between 0 and 1. The percentage values of forest cover in the windows are listed in

Table 4.5.
Metrics values dependent on window size, Metrics values dependent on window size, FMERS
CLC data data
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Figure 4.11 Metrics ‘response curves’ or scalograms with values plotted against window size or (sub-
landscape) extent. CLC and FMERS data for the entire study area (under the forest masks). Note that M

and PPUN metrics map to 2nd axis values.

When these graphic outputs are compared, it is obvious that the metrics behave very much in
the same way for the two datasets, for the shape as well as the relative position of the curves.

Thus, they show similar scaling properties. The almost complete overlap of the PPUN and
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cover curves for the FMERS data is accidental, but clearly shows the relation between these
two metrics. It is noteworthy though that for the CLC data, the PPUN values are markedly
lower — but not the PPUN_B values. As expected, the value of the diversity metrics increase

with window size, as more land cover classes get included in each window.

The most noteworthy differences are observed for the SqP metric, that starts out at a lower
level for the FMERS data and grows more rapidly than for the CLC data with increasing
window size. This is probably due to the fact that the small window sizes correspond to very
few pixels, where the probability of finding ‘blocks’ of forest is much higher, while on the
other hand large windows will include a mixture of forest and non-forest. The same
phenomenon is reflected in the decrease of the average forest cover with window size. Note
that due to the definition of the metric, high values of SqP (approaching 1) indicate forest that
is more scattered/fragmented across the landscape, i.e. distributed on a number of patches.
The higher values for the SqP metric from CLC relative to the values from FMERS data is in
agreement with the observation in section 3.3.1 where synthesised images were analysed, and
SqP found to decrease with increasing pixel size (for a fixed size of the spatial window, thus
representing the same “ground truth” = forest structure across the scalogram). Figure 4.12
shows that the numeric values of SqP is more closely related to the size of the geographical
window than to the number of pixels included in the calculations. This is a reassuring result,
and speaks in favour of using this metric as an indicator of forest structure, given that a

correction for window size can be applied.
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Figure 4.12 Average values of the SqP metric for the two data types plotted against window size in

pixels resp. meters

4.5.1.1 Patch counting and the PPU metric

Values of patch count metric values are influenced by the size of the windows, due to the
effects of “cutting off” of patches that are partly within the window, as seen from the plots of
average PPU versus window size. Thus, the smaller the window, the greater the number of
separate patches, which are parts of larger patches, with centre outside or on the edge of the
window. This effect will also influence the values of calculated average patch sizes (a metric
that only makes sense for entire landscapes or vary large windows). Another notable effect is
that as the window size increases, more non-forest area is included, as seen from Table 4.5
(last column). This is due to the non-random (i.e. clumped) distribution of forest across the
landscape. It is hard to separate these two effects, and caution must be taken when metrics
based on the number of patches in a given area are used, especially at small (< 30-40 pixels)
window sizes. In Figure 4.13 and Figure 4.14 the values of PPUN and PPUN_B are plotted

against window size and forest cover fraction respectively.
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cell size, m |side factor|area factor|PPUN_CLC| PPUN_FMERS Mean_cover_percent
CLC image

1200 1 1 2.57 1.66 47.33
1600 1.333 1.778 2.33 1.48 45.14
2000 1.667 2.778 2.18 1.35 43.34
2400 2 4 2.08 1.27] 42.10
3600 3 9 1.94 1.13 40.23
4800 4 16 1.85 1.06 38.77
6000 5 25 1.80 1.02 37.79
7200 6 36 1.76 0.99 37.01
8400 7 49 1.73 0.97 35.90
9600 8 64 1.71 0.95 36.07
10800 9 81 1.68 0.94 35.27
12000 10 100 1.66 0.93 34.99
14400 12 144 1.63 0.91 34.10
16800 14 196 1.61 0.90 33.36
19200 16 256 1.58 0.89 32.80

Table 4.5 Patch count values from different window sizes, the unit of the PPU metric is no. of patches
per square km. The shaded rows of the table indicate values calculated using WinChips, the remaining

ones are calculated in Excel.

The agreement in the shape of the PPU-curves between the two data sources seen in Figure
4.13 indicates that their behaviour is an inherent effect of the way in which the metrics are
calculated — as much as of the spatial distribution of forest on the Italian peninsula! Here it
would be very relevant to test on data from a neutral model, as done by Saura and Martinez-
Millan (2001). These authors also described the sensitivity of spatial metrics values to
window size, and found that for their artificial data, measures of patch density increased with
window size. Such tests were carried out early in this project, but with no conclusive results,

and have since been determined to be outside the scope of this study.

137



Normalised Patches Per Unit vs. Window Size
3 1
25142 :
o~ o
£ o
g 2 T
= 1
5 - u]
o ' IR S N
2 %
B o
T T 5
g m 5] @ o o o
£ = LU L I S 9 ¥ )
=
0.4 o PPUN_CLC
OPPUM_FMERS
*PPUN_B_CLC
0 mPPUN_BE_FMERS
0 5000 10000 15000 20000
Moving Window size, m

Figure 4.13 Average patch density plotted against window size, CLC and FMERS. Note the different

shapes of curves for forest respectively background patch densities.

Normalised Patches Per Unit vs. Forest Fraction
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Figure 4.14 Average patch density plotted against the average forest cover, for CLC and FMERS data
in the respectively included windows/output cells. Note that the right hand side of the curve, with

largest forest cover values represents the smallest window sizes (compare Table 4.5).

By visual inspection of the maps produced and comparison with the input data, it appeared
that the number of patches in the “background” class, i.e. all non-forest pixels was a good
indicator of one aspect of forest fragmentation, namely the perforation or lacunarity of the
forest landscape. Maps of the number of “background patches” at window sizes ranging from

1200 and 4800m, from the CLC and FMERS data is shown in Figure 4.15.
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Count of Background patches: Fragmentation or lacunarity ?

FMERS, 6*6 pixels

FMERS, 24*24 pixels CLC, 4848 pixels

Figure 4.15 Background patch count applied as possible fragmentation metric. Derived maps show the
number of separate patches belonging to the "background" class in FMERS and CLC images
respectively. These maps are outputs from the Surfer software, where the text-files from the IDL

calculations are converted to grids.

4.5.2 Variability and autocorrelation of the metrics

The local standard deviation was calculated for the full series of metrics images, using a
WinChips filtering function (Hansen 2000) and the results extracted as a statistics file. In
Figure 4.16 and Figure 4.17 the local variation of two metrics: forest proportion and
Shannon’s diversity are plotted against the size of the moving windows. The first observation
from the figures is that the variation behaves in a similar way for the two different data types.
In both cases the variability in cover fraction initially falls with increasing window size, then
stabilises or increases, indicating that for CLC data there is a characteristic size of forest areas
between 15 and 20 km where a slight maximum is observed, for FMERS data there is possibly
a maximum above 20 km. For the CLC data there is a slight increase in the variability of the
SHDI diversity metric, which is not found for the FMERS data. This is in contrast to the
increase in the absolute values of this metrics seen in Figure 4.11. Similar behaviour is seen

for the SqP metric, where the standard deviation decreases in spite of an increase in the
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absolute values of this metric with window size. For both data types, the variance of the

PPUN metric decreases in the same way as the absolute values. The difference of the response

curves for forest cover and diversity metrics indicate that these properties have different

spatial domains/characteristic distances. This is theoretically possible, and could for instance

owe to changes of composition within forested areas following altitude variations — this

possibility is evaluated in the chapter 5.
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Figure 4.16 Standard deviation of the values in output cells for CLC data, calculated in 3*3 cell

windows and averaged over the non-empty parts of the image. Note that the ‘cover’ (percentage) values

map to the 2™ y-axis.
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Figure 4.17 Standard deviation of the values in output cells, for FMERS data the curves of both forest

cover and SHDI show a distinct minimum. Note that the cover values map to the 2™ y.axis.

140



When the coefficient of variance is calculated for each metric and displayed as function of the
window size, it becomes clear that the different metrics show different responses to change of
scale, see Figure 4.18 and Figure 4.19, below. The ‘peak’ in the variance of the forest cover

for the CLC data is still visible, and also the Matheron metric of fragmentation increases after
having its minimum average values around a window size of 10 km, most clearly for the CLC

data but also visible for FMERS. All other metrics have steadily decreasing coefficient of

variation.
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Figure 4.18 Local variability of CLC data. Coefficient of variation from the suite of spatial metrics as

function of the window sizes for which they are calculated.
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Spatial variance following window size, FMERS
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Figure 4.19 Local variability of FMERS forest map data. Calculated as described above.
An alternative way of describing spatial variability is through the Moran’s I metric of

autocorrelation, as shown in Figure 4.20 and Figure 4.21, below:

Spatial autocorrelation following window size,
CLC data
07
L A U SN S A
B RSN IN
08 1o USSR SRIREE S . e
+ & o : el )
. gk--a---8 a. ! *.
E 0'55_""’J""n'"'E""?:ZJIZI.TI;':""?'ff]ﬁ """" TR MATH
S 05 -...ﬂ?.”.;s.,.,..f.'.'.’.ff, ................ B s PPUN
E n45 _4'::\ ___________________ ' x - 5gP
o ; ; : - - COVEr
e T e i Frormmmmmmemmeee | - SHDI
* D X )
R S -
O 3 : E " s
0 5000 10000 15000 20000
output cells, meters

Figure 4.20 Local variability of spatial metrics from CLC data, expressed with Moran’s I as function of

the cells for which they are calculated.
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Spatial autocorrelation following window size,
FMERS data
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Figure 4.21 Local variability of spatial metrics from FMERS forest map expressed with Moran’s 1.
For this method of measuring local variance, all the metrics show distinct peaks. The shape of
the curves are quite similar for the two data types, but as for variance measures, the position
of the peaks differ.

In principle, low values of MI should correspond to high values of variance, but the behaviour
of the values as expressed in Figure 4.20 and Figure 4.21 differ from what is observed for
the standard deviation and coefficient of variance values in Figure 4.16 to Figure 4.19. The
troughs on the graphs represent window sizes with relatively lower spatial autocorrelation,
and thus the highest information content on landscape structure. This indicate that SqP and M
should be reported and/or mapped with window size 12 km and SHDI at 14.4 km. On the
other hand, the distinct peaks of MI values for the cover metric indicate that window sizes
around 6 km for CLC data and 4 to 5 km for FMERS data should be avoided when maps of
forest cover are made — keeping in mind that the purpose of such maps is to highlight
differences between areas. The fact that the Matheron index for description of fragmentation
peaks at larger window sizes than the cover fraction metric could mean that the spatial

structure of the forest area is a property that characterises different regions, and is more or less
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independent of the actual forest cover. This assumption can be confirmed by inspection of the
correlation between values of cover and M, as done in the next section.

4.5.3 Relationships between different metrics

The values of the different spatial metrics are far from independent of each other, as shown in
a number of studies (for instance Riitters et al 1995, Hargis et al 1998, Gallego et al 2000).
The way in which the correlation coefficients vary with window size is a scaling property of
the metric as well as of the data. In this study with a fixed study area and increasing window
sizes, the number of samples i.e. output cells or windows will decrease as the size and number
of ‘input-pixels’ for each window increases. The number of windows with ‘forest presence’
has been counted, and the critical values of the correlation coefficient r to attain significance

are listed in Table 4.6, below. Note that for large sample sizes, even small values of r are

significant.
cell size, meters Number of r_crit cell size, Number of r_crit
observations meters observations

1200 86431 0.007| 8400 2726 0.038
1600 60113 0.008 9600 2088 0.044
2000 40152 0.010 10800 1681 0.049
2400 28644 0.012 12000 1364 0.054
3600 13271 0.017 14400 968 0.064
4800 7773 0.023 16800 724 0.074
6000 5095 0.028 19200 574 0.083
7200 3606 0.033

Table 4.6 Critical R values for varying number of observations with a=0.05, calculated following the

formula given in section 4.4.2.1.

Table 4.7 and Table 4.8 below represent the correlations between the different spatial metrics
at the smallest window size in this study, namely 1200*1200 m as defined by 6*6 pixels of
the FMERS map and 12*12 pixels of the CLC map. The area of this geographical window is
1.44 km® or 144 hectares. The number of output pixels, representing windows included
(covered by the forest mask), which is also the number of observations, is 86,431, out of a

total 242,528 pixels/windows in this largest or most detailed output image.
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CLC_1200m Cover SHDI SIDI Math SqP NP NP_back
Cover 1
SHDI 0.437 1
SIDI 0.421 0.993 1
Math -0.191 0.005 0.013 1
SqP -0.641 -0.264 -0.255 0.081 1
NP 0.481 0.741 0.72 0.312] -0.339 1
NP_back 0.044 0.027 0.032 0.476 0.153 0.106 1

Table 4.7 Correlation coefficients between metrics, C

LC image with 12*12

pixels window.

FMERS_1200m | Cover | SHDI SIDI Math SqP NP NP_back
Cover 1
SHDI 0.513 1
SIDI 0.48 0.989 1
Math -0.367 0.037 0.072 1
SqP -0.555| -0.264| -0.256 0.096 1
NP 0.575 0.871 0.837 0.09] -0.313 1
NP_back -0.046 0.114 0.114 0.388 0.219 0.118 1

Table 4.8 Correlation coefficients between metrics, FMERS image with 6*6 pixels window.

According to the coefficients given in Table 4.6, all correlations in Table 4.7 and Table 4.8 are

significant, as their absolute value is greater than 0.007. For both data types, the highest

correlation is found between the two metrics of diversity, which is not surprising given their

definitions. Therefore, for the further analysis in this chapter only SHDI will be used — in

order to avoid redundancy. SHDI expressing dominance however correlates better with the

cover proportion than SIDI expressing evenness. This was expected, since densely forested

areas tend to be dominated by one forest type. There is a strong positive correlation between

the values of NP (patches per window, shown earlier to be proportional to PPUN), the cover

fraction and SHDI. The reason for the correlation between metrics of diversity and patch

density is probably that, when more than one land cover type is present in the window, more

than one patch is counted — there are at least as many separate patches as land cover types

within each window. The correlations are stronger for the FMERS data than for the CLC data,

probably due to the fact that the land cover types are more evenly distributed in the FMERS

map (see Table 4.2, page 117). In both data sets, the metrics of forest structure M and SqP

show strong negative correlations with the forest cover fraction. This is probably because at
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this small window size there are many pixels representing 100% forest cover, which by
definition give zero values of M and SqP. At this window size M and SqP values are only
weakly correlated, indicating that they describe different aspects of landscape structure, at
least at small window sizes. The count of background patches, NP_back are, for both data
types highly correlated with the Matheron index. This confirms that NP_back (or the
transformed version PPUN_B) has potential for use as an indicator of one important aspect of
forest fragmentation. On the other hand it is worth noting that, while M correlates quite well
with NP for the CLC data, the correlation is weak for the FMERS data. Finally, it is seen that
for both data types the SqP metric is negatively correlated to the NP metric but positively
correlated to the NP_back metric. This may result from the fact that SqP approaches zero as
the forest cover approaches 100%, and the possibility of finding background patches is

reduced.

The maximum number of forest patches at this window size is 19 for the CLC data and 37 for
the FMERS data. This is a somewhat counterintuitive finding, as there are four times as many
pixels in the CLC windows for similar resolutions, but it must be attributed to the way in
which the data are prepared, namely the pixel-by-pixel classification of the FMERS data and

the area-delineation for the CLC data, compare Figure 4.3 on page 115.

When the window side length is doubled to 2400m and the size is quadrupled to 5.76 km?, the
general pattern of correlations remain the same, as shown by the coefficient values in Table
4.9 and Table 4.10. The cover proportion becomes more positively correlated with the
diversity metrics, and less negatively with the fragmentation metrics. At the same time, the
diversity metrics are less correlated with the patch count metrics, a trend that continues for

increasingly larger windows.
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CLC_2400m| Cover SHDI SIDI Math SqP NP NP_back
Cover 1

SHDI 0.472 1

SIDI 0.443 0.991 1

Math -0.080 0.115 0.129 1

SqP -0.481 -0.196 -0.185 0.211 1

NP 0.512 0.740 0.718 0.382 -0.148 1

NP_back 0.444 0.237 0.228 0.359 0.071 0.322 1

Table 4.9 Correlation coefficients between metrics, CLC image with 24*24 pixels window.

FMERS_2400m | Cover SHDI SIDI Math SqP NP  |NP_back
Cover 1
SHDI 0.509 1
SIDI 0.460 0.986 1
Math -0.323 0.131 0.168 1
SqP -0.389 -0.077 -0.065 0.401 1
NP 0.622 0.829 0.784 0.131 -0.066 1
NP_back 0.467 0.327 0.299 0.120 0.112 0.421 1

Table 4.10 Correlation coefficients between metrics, FMERS image with 12*12 pixels window

Figure 4.22, below plots the relation between two pairs of metrics: forest cover percentage —

SqP metric (cover vs. fragmentation) and PPUN — SHDI (patchiness vs. diversity) for both

types of input data. The window size of 2400 m represent the smallest window size for which

it was possible to use the graphic functionality of Excel (initial number of windows/output

cells is 291*208=60,528, and Excel in the version used can handle a maximum of 65,536

rows). The negative correlation coefficient for SqP and cover seen in the tables above point to

a general pattern of more square forest patches with higher forest cover, while the positive

correlation coefficient for SHDI and PPUN (or NP = number of patches) reflects an increasing

land cover diversity with more separate patches — or vice versa.
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Figure 4.22 Plots of different metrics values from the same data source, here CLC and FMERS data

with metrics calculated for 2400%*2400 m windows. Only output cells with forest cover >= 1% are used.

The relations between metrics for the window size of 4800*4800 m corresponding to 23.02

km? are reported in Table 4.11 and Table 4.12. For the CLC data, the M metric is observed

NOT to be significantly correlated with the cover proportion, the value of —0.003 represents a

turning point, in the sense that for larger window sizes, the correlation coefficient is

(significantly) positive.
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CLC_4800m| Cover SHDI SIDI Math SqP NP NP_back
Cover 1.000

SHDI 0.468 1.000

SIDI 0.418 0.988 1.000

Math -0.003 0.162 0.174 1.000

SqP -0.183 -0.025 -0.022 0.413 1.000

NP 0.545 0.694 0.666 0.449 0.124 1.000

NP_back 0.685 0.327 0.290 0.279 0.133 0.469 1.000

Table 4.11 Correlation coefficients between metrics, CLC image with 48*48 pixels window.

FMERS_4800m | Cover SHDI SIDI Math SqP NP  |NP_back
Cover 1.000
SHDI 0.482 1.000
SIDI 0.418 0.981 1.000
Math -0.233 0.190 0.223 1.000
SqP -0.256 0.038 0.043 0.570 1.000
NP 0.683 0.765 0.707 0.196 0.079 1.000
NP_back 0.731 0.384 0.332 -0.009 0.048 0.585 1.000

Table 4.12 Correlation coefficients between metrics, FMERS image with 24*24 pixels window

For the window size of 96009600 m corresponding to 92.16 km?, the relations are collected

in Table 4.13 and Table 4.14 below. For both data types, both fragmentation metrics have now

become clearly positively correlated with the diversity metrics. For the CLC data, M and SqP

have positive correlations with cover proportion, while for the FMERS data, SqP is at the

turning point with the value of —0.001, an r-value which is not a significant correlation to the

cover proportion.

CLC_9600m| Cover SHDI SIDI Math SqP NP NP_back
SHDI 0.431 1.000

SIDI 0.363 0.986 1.000

Math 0.102 0.164 0.167 1.000

SqP 0.165 0.175 0.163 0.621 1.000

NP 0.590 0.604 0.575 0.522 0.374 1.000

NP_back 0.806 0.323 0.267 0.280 0.281 0.567 1.000

Table 4.13 Correlation coefficients between metrics, CLC image with 96*96 pixels window.
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FMERS_9600m | Cover SHDI SIDI Math SqP NP | NP_back
SHDI 0.472 1.000
SIDI 0.401 0.976 1.000
Math -0.119 0.230 0.253 1.000
SqP -0.001 0.262 0.264 0.684 1.000
NP 0.743 0.707 0.644 0.275 0.267 1.000
NP_back 0.850 0.402 0.337 -0.012 0.118 0.685 1.000

Table 4.14 Correlation coefficients between metrics, FMERS image with 48*48 pixels window

At the largest window size used, 19.2*%19.2 km corresponding to a window area of 368.64

km?, all correlation coefficients are positive and significant. Table 4.15 and Table 4.16 show

that the correlation between cover fraction and number of background patches, which for both

data types had low absolute values for small window sizes, has now grown to yield high

values. This must be attributed to the fact, that for large window sizes, there are no windows

which are completely covered by forest (for 19.2*%19.2 km windows the maximum values are

around 90% for both data types), and thus the effect that densely forested areas include a

number of background patches here and there become dominant. Due to the nature of the two

data sets, this effect is most apparent for the FMERS data, which have a more scattered

appearance and no minimum area condition for mapping of patches — opposed to the CLC

where the minimum area is 25 ha (corresponding to 6 4 FMERS pixels).

CLC_19200m| Cover SHDI SIDI Math SqP NP NP_back
Cover 1.000

SHDI 0.396 1.000

SIDI 0.326 0.984 1.000

Math 0.267 0.131 0.119 1.000]

SqP 0.394 0.272 0.247 0.728 1.000]

NP 0.645 0.480 0.453 0.630 0.505 1.000

NP_back 0.872 0.318 0.256 0.373 0.397 0.657 1.000

Table 4.15 Correlation coefficients between metrics, CLC image with 192*192 pixels window.
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FMERS_19200m| Cover SHDI SIDI Math SqP NP NP_back
Cover 1.000

SHDI 0.441 1.000

SIDI 0.358 0.968 1.000

Math 0.059 0.242 0.247 1.000

SqP 0.216 0.329 0.317 0.786 1.000

NP 0.795 0.639 0.567 0.408 0.443 1.000

NP_back 0.911 0.407 0.332 0.109 0.246 0.765 1.000

Table 4.16 Correlation coefficients between metrics, FMERS image with 96*96 pixels window.

The plots in Figure 4.23 below show the nature of the relations between different metrics for

19.2*19.2km windows, the largest extent examined here. These relations have been expressed

here through the values of correlation coefficients — although the reality can be more complex

than the linear relationships that are normally assumed. For instance, the shape of the curves

for the M-SqP relations indicate a form of power-law relation between these two metrics.
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Figure 4.23 Plots of different metrics values from the same data source, here CLC (left) and FMERS

(right) data with metrics calculated for 19200*19200 m windows. Only output cells with forest cover

>= 1% are used.
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Due to such relationships, when these metrics are used as indicators, we should not expect
them to describe completely different aspects of landscape structure, but rather different
interpretations of the relationship between forest area, edge length and total (landscape) area.
Table 4.17 and Table 4.18 below summarise the correlations between cover fraction and the
other metrics for the range of window sizes examined in this study. Correlation coefficients
are observed to increase with window size for all the fragmentation and patch-count metrics

and diversity metric to decrease slightly.

CLC correllation between metric and cover%

window

size SHDI Math SqP NP NP_back
1200 0.437 -0.191 -0.641 0.481 0.044
2400 0.472 -0.080 -0.481 0.512 0.444
4800 0.468 -0.003 -0.183 0.545 0.685
9600 0.431 0.102 0.165 0.590 0.806

19200 0.396 0.267 0.394 0.645 0.872

Table 4.17 Summary of correlation coefficients between cover proportion and metrics values at

increasing window sizes for CORINE land cover data.

The difference between the CLC and the FMERS data is notable for the ‘fragmentation
metrics’ M and SqP, where for the CLC data the correlations become positive for window
sizes between 4800 and 9600m, while for the FMERS data they do so above 9600m. For both

data types the SqP values become more highly correlated with forest cover at large window

sizes.

FMERS [correllation between metric and cover%

Window

size SHDI Math SqP NP NP_back
1200 0.513 -0.367 -0.555 0.575 -0.046
2400 0.509 -0.323 -0.389 0.622 0.467
4800 0.482 -0.233 -0.256 0.683 0.731
9600 0.472 -0.119 -0.001 0.743 0.850

19200 0.441 0.059 0.216 0.765 0.911

Table 4.18 Summary of correlation coefficients between cover proportion and metrics values at

increasing window sizes for FMERS forest map.
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4.5.4 Relationships between metrics derived from the two different data types
The degree of correlation between the values of the same spatial metric derived from two
different data sets informs us about the degree to which the (metric) values from one data set
can be used to predict and eventually substitute the values derived from the other (Costanza
and Maxwell 1994). Examination of this degree of predictability provides information on the
nature and usefulness of the (image) data sets as well as on the behaviour of the chosen
metrics, however not distinguishing effects due to the ‘nature’ of the metrics from effects
owing to the ‘nature’ of the data, as discussed by for instance Turner et a/ (1989) and Saura

(2002).

Table 4.19 A and B summarise the agreements found between the same metrics, from the two
different image sources with different resolutions, at varying window sizes. The R-square

values are plotted against the window size in Figure 4.24.

comparing CLC- Window size, meters
FMERS A

1200 1600 2000 2400 3600 4800 6000

Cover Multiple R 0.543 0.626 0.684 0.724 0.787 0.819 0.840
R Square 0.295 0.392 0.468 0.524 0.619 0.670 0.705

SHDI [Multiple R 0.192 0.237 0.274 0.301 0.336 0.352 0.366
R Square 0.037 0.056 0.075 0.090 0.113 0.124 0.134

Math [Multiple R 0.009 0.077 0.137 0.187| 0.280 0.340 0.382
R Square 0.000 0.006 0.019 0.035 0.078 0.116 0.146

PPU [Multiple R 0.237 0.305 0.360 0.394 0.459 0.499 0.527
R Square 0.056 0.093 0.130 0.155 0.211 0.249 0.277

SgP  Multiple R -0.019 0.014 0.027 0.045 0.144 0.204 0.227
R Square 0.000 0.000 0.001 0.002 0.021 0.042 0.052
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comparing CLC- Window size, meters
FMERS B

7200 8400 9600, 10800, 12000, 14400, 16800, 19200
CoverMultiple R | 0.854 0.864 0.870 0.879 0.884 0.894 0.902 0.903
R Square 0.730 0.747 0.757 0.772 0.781 0.799 0.814 0.816
SHDI Multiple R | 0.364 0.379 0.385 0.345 0.376 0.381 0.373 0.371
R Square 0.132 0.144 0.148 0.119 0.142 0.145 0.139 0.138
Math [Multiple R | 0.405 0.421 0.447 0.467 0.489 0.510 0.524 0.534
R Square 0.164 0.177 0.200 0.218 0.239 0.260 0.274 0.285
PPU Multiple R | 0.538 0.567 0.571 0.582 0.598 0.620 0.633 0.642
R Square 0.289 0.321 0.326 0.339 0.357 0.384 0.401 0.412
SqP  Multiple R | 0.268 0.332 0.325 0.364 0.378 0.376 0.433 0.453
R Square 0.072 0.110 0.106 0.132 0.143 0.141 0.188 0.205

Table 4.19 A and B Agreement between metric values from different image sources at varying window
size. The values for output cell sizes < 2400m are calculated using the statistical functions of

WinChips, for larger (and fewer) windows using the analysis module of Excel.
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Figure 4.24 R-square, expressing agreement between metrics values from CLC and FMERS data,
plotted against spatial extent/window size. Smallest windows are 6*6 pixels for FMERS and 12*12

pixels for CLC data, largest windows 96*96 pixels for FMERS and 192*192 pixels for CLC.
As shown in Chapter 3, the different metrics show quite different correlations at the same

window size. More surprisingly they respond in different ways to the changes in window size,
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as expressed by the shape of the window size-correlation curves. In general, the increasing
window size will even out differences between spatial structure as mapped in the two data
sets, leading to higher correlations, most notably and understandable for the forest cover
fraction, which also has the highest correlation coefficients at all window sizes. This is partly
due to the elimination of possible errors in the geo-referencing of the datasets (how well the
two ‘maps’ fit each other), a common problem for large-area data in grid format. The “dip” on
the curve for the correlation of the SHDI-value at 10.8 km window size is not easily
explained, as it has been computed in the same way as its neighbouring values and checked
more than once. Perhaps the lower correlation of the SHDI diversity values at this window
size reflects a change in spatial domain from landscape to regional level (following the size of
characteristic landscape structuring elements like the width of valleys). Also the response
curve for the SqP metric behaves in an irregular, step-wise fashion. The shape of the cover-
curve suggest that the response of R to window size follows a power-law or logarithmic
relation, and that is confirmed by plotting these values against window size on a logarithmic

scale as shown in Figure 4.25.
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Figure 4.25 R-square-plot similar to Figure 4.24, but with window size values transformed

logarithmically.
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The correlation for the patch count metric PPU/PPUN (count of forest patches per unit area)
improves steadily with window size, also in a log-linear fashion. This is an interesting and
quite promising result, since the degree of patchiness and thus number of patches is amongst
the largest differences between the CLC and the FMERS data sets (see the difference of the
absolute (average) values of the metrics listed in Table 4.5). Though not shown above,
correlations between the count of background patches in the two different data types were also
derived for the window sizes described here in detail, and are reported in Table 4.20. The
correlation of background patches-count values follows the pattern of correlation (of
NP_back) with forest cover fraction seen in Table 4.17 and Table 4.18. When the metric of
background patches correlate well for large windows, it is in agreement with the high

correlation of forest cover-fraction values between the two data sets for large windows.

Inter-correlation
CLC-FMERS images
window size |NP NP_back
1200 0.237 0.093
2400 0.394 0.272
4800 0.499 0.518
9600 0.571 0.681
19200 0.642 0.791

Table 4.20 Agreement between the two data sources on the number of ’background patches”, as
expressed through the correlation coefficient R, improves drastically with increasing size of output cells

(and thus the number of input pixels).
4.5.5 Comparisons of metrics values with different regionalisation approaches

The use of watersheds or catchments (the term used here) is becoming increasingly popular
for environmental assessment in general and for reporting of spatial metrics in particular.
Intuitively it seems reasonable to use these naturally delineated, functional regions as the basis
for reporting of environmental parameters, especially when these are related to water quality
or sediment load. Recently, there has been a number of studies on the use of spatial metrics at
watershed level (Tinker et a/ 1998, Patil et al 2000, Jones et a/ 2001, Cifaldi et al 2003). Vogt

et al (2003) used satellite based forest maps in combination with catchment and elevation
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data' to describe forest-water interactions such as the fraction of rivers running through
forest. Administrative regions, on the other hand, have the advantage of already forming a
hierarchy of levels from nation state to parish, farm or forest plot for which GIS data are

readily available.

A central question that can possibly be answered with the MW-approach is whether
catchments are more homogeneous than the administrative regions within the study area. This
is relevant because watersheds/catchments have been proposed as natural reporting units for
landscape properties and environmental indicators (Apan ez a/ 2000, Paracchini ez a/ 2000,
Patil et al 2000, Vogt et al 2003). In this section the question is addressed through extraction
of spatial metrics values for selected NUTS-regions and for selected 4™ to 6™ order
catchments. Thus, the MAUP is treated through data analysis on overlapping but different
regions. Also the coefficient of variance is calculated for the administrative regions and the
catchments for both data types, and for a number of window sizes — since it can be
hypothesised that if a more homogeneous forest structure is found within the catchments, the
variation of the metrics values that characterise structure will be smaller within the region (in

practice/GIS-implementation the polygon used to extract statistical parameters).

Another dimension is the comparison of the two different data sources. When the same set of
results is derived from both data sources, in terms of output cell size and metrics, the
agreement between them can be investigated at the level of catchment or region. Thus,
regression between CLC and FMERS metrics was performed separately within the
geographical areas of interest. Finally the averaged values per region were compared. Given
the limited number of regions and the problem with regression of such averaged values, the
rank-size correlation was applied, in order to test whether the metrics were sufficiently robust

to point out areas with high/low diversity, fragmentation etc. even with different input data.

' The catchment and elevation data used in this thesis are based on the ones used in Vogt et al’s study,
which is carried out at the JRC. The current version of the database is available through the web site
http://agrienv.jrc.it; follow the link Activities - Catchments, and data can be requested and downloaded.

157



The administrative regions used are illustrated in Figure 4.26, and the catchments with

numbering are shown in Figure 4.27.
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Figure 4.26 Forest cover and SHDI in 1200*1200 m cells from CLC forest map. To the left, foreét
cover overlaid with Italian regions (NUTS-2 level). To the right map with values of Shannon’s

diversity index (SHDI), created in the same IDL batch-run.
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Figure 4.27 CLC data with high-order catckhmernt polygons. To the left, the original CLC data overlai

with the 4™ order catchments used in this study. To the right, forest cover fraction from the CLC-based

forest maps for 4.8*4.8 km windows, overlaid with 5™ and 6™ order catchments.
Note that Corsica is included in the administrative theme, even though the island is a French
region. In the text and tables, the catchments are named by their order, followed by an

underscore and the code that functions as unique identifier, so possible names are i.e. 5 01.

Statistical properties of the MW-outputs were extracted per administrative region and
catchment for a subset of spatial resolutions, namely 1200, 2400, 4800, 9600 and 19200m
output cells. This is deemed sufficient to describe scale effects on the metrics values, though

the entire set of metric images as used in the previous sections were available. Not all of the
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extracted values are shown here in table form, but scaling profiles are used to illustrate their
properties for the selected geographical units. Note that the way in which the graphs are

constructed result in a ‘logarithmic’ appearance, as the window size is doubled for each step.

Figure 4.28 below presents examples of how spatial metrics are derived with the M-W method
and reported either as raster maps with pixels corresponding to the output cells or as vector
maps with metrics values assigned to regions (the ones used for delineating the parts of the
image from where statistical information is extracted). Note that in the figure, image 2 is
derived from image 1, and that image 3,4 and 5 subsequently represent different way of

describing the MW-outputs in image 2.
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Figure 4.28 Examples of landscape metrics values reported at catchment level, in this case relatively

simple forest cover information.

In Figure 4.28, Image 1 shows the catchments of 4™ to 6™ order that are used here on a
background of the FMERS forest map that is used as input to the MW-calculations. Image 2
shows M-W output at window size 4800m, for each output cell measured forest cover
percentage. These values are used in the following derived images. Image 3 shows the FC
metric values, ranging from 0 in the lower Tevere to 0.425 on the upper Po plain. Image 4
shows the cover percentage (under the forest mask) per catchment, and image 5 shows the
coefficient of variation within the catchment of the cover percentage values. Finally, image 6

shows the cover percentage values from the CLC data also at 4800m cell size, and is thus
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directly comparable with image 4. The rank correlation between these two particular outputs
is found to be significant at 5% probability level (Table 4.34, below). Due to the nature of the
image data (floating point) and a wish to use the full range of colours of the look-up-tables

relative values are shown in the image legends.

4.5.5.1 Metrics values within catchments

The statistics for the various output cell sizes were collected in spreadsheet files — one for
catchments and one for administrative regions, making it possible to report and summarise the
metrics values. Examples for the catchments delineation are shown in Table 4.21 and Table
4.22 below. It appears here that according to CLC, the highest values of diversity metrics and
lowest values of fragmentation metrics are found at relatively high altitudes in the Po
catchments in the northern part of the area. The lowest diversity and highest fragmentation is
then in the catchments that contribute to the Tevere. Catchment 4 48 (region 11 in the tables
below) is the upper catchment of that river, an area that more or less coincides with the
Umbria administrative region. The highest FC value is found for 4 26 (7 in the tables) that is
situated across the Po plain on the upper to middle part of the rivers longitudinal extent, east
of the confluence with the Ticino river at Pavia, while the lowest FC value is found for

catchment 4 49 (10) in Toscana, with a mixture of agricultural plains and forested hills.
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CLC 4800m pixels | cover | PPUN [PPUNB| SHDI | SIDI |Math.| SqP [Elevation FC
l6th ord |6 01 Po (1) 2168 39.87] 1.039 0.829 0.507] 0.299 2.301| 0.655  788.9 0.306
5th ord [5_04Po (1) 622 36.31 1.04 0814 0576 0.344] 2.157| 0.645 1122.4] 0.172

5 06 Po (2) 286| 37.31 1.023 0813 0452 0.265 233 0.656 516.4 0.206
5 09 Po (3) 331 4225 1.103] 0.835 0.516 0.308] 2.691 069 679.4 0.085
5 11Teve (4) 704 4221 1.074 0.881 0.343 0.191] 3.123] 0.734) 592.1] 0.095
ath ord |4_42 Po (1) 111 54.81 1.146 0.868 0.58] 0.341 2.408 0.654  468.6 0.036
440 Po (2) 213] 36.31] 1.088 0.82 0487 0.293] 2.876] 0.714] 794.6] 0.084
4 22 Po (3) 286 38.28 1.032] 0.817] 0565 0.335 2.047 [PB§ 1082.7] 0.154
416 Po (4) 35 36.43 1.101 0.847] 0.728) 0436 2.266 0.663 1258.5 0.057
4 11 Po (5) 148] 36.88 1.051 0.804] 0.665 0.398 BI0OBE 0.648] 1730.5 0.101
425 Po (6) 146| 32.71 1.04 0.807] 0497 0297 2.357] 0.661 608.0 0.308
4 26 Po (7) 114] 32.44 D06 OO 0.357] 0.212] 2.324] 0.636 360.7 0.325
4 12 Po (8) 145 4511 1.089 0.842] 0568 0.331 2.305| 0.67] 684.0 0.069]
447 Tosc (9) 377 4218 1.077] 0.86 0547 0319 3.039 0723  342.4 0.085
449 Tosc (10) 154 42.01 1.068 0.862] 0.469 0.274] 3.102 0727 341.3 DloA9|
4 48 Teve (11)| 335 39.86] 1.104| 0.901 0.331 0.182] 3.665 0.771 462.6) 0.042
4 50 Teve (12)| 213 53.76) 1.092 0.904 0.407] 0.223 2.536 0.708 934.7] 0.047
4 52 Teve (13) 156| B 0.984 0.805 D284 [HBE 2.759 0.688  402.4) 0.276
avg. 5th order 413 3863 1.055 0.821 0.515 0.308 2.393 0.664  772.7 0.154]
avg. 4th order | 149.75 39.12 1.065 0.825 0.556 0.330 2.333 0.660 873.5 0.142

Table 4.21 Summary at catchment level of spatial metrics from the CLC map, with medium window
size 4800m. The Highest metrics values are highlighted in yellow, lowest values in [BIll§. Average
elevation from the terrain model is included as a supplementary description of the area. Note that this

value is an average for the forested windows in the area only.

Figure 4.29 below shows the scaling profiles of the SHDI and Matheron indices respectively,
for six 4™ order catchments with pronounced differences in the shapes of the curves. The
continuous increase and fall of the values are expected from previous results (section 4.5.1),
so what is interesting are the edges on the curves. The sharp increase of the SHDI values for
catchment 4 26 from 9600 to 19200m window size reflects that a characteristic forest (patch)
size has been exceeded and additional forest classes are included in each instance of the
window, this is especially clear for the southern part of the catchment, with hills to the north
of the Apennines. On the other hand, the SHDI values for catchment 4 22 increase only little

when the window side length is doubled from 9600 to 19200m, because only few of the larger
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windows include more forest classes (implying that the characteristic landscape or forest size
in the area, in terms of side length, is not larger then 10 km). For both CLC and FMERS based
metrics, the average values for the 13 fourth order and the 4 fifth order catchment areas are
almost the same, and that the fifth order values show less variation, since they represent
average values taken over larger areas. As the catchment areas become larger, the metrics

values approach the averages for the entire study area that are shown in Figure 4.11.
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Figure 4.29 SHDI and Matheron metrics, extracted from CLC data to catchment areas, for a range of

output cell sizes.

For the FMERS data, reported in Table 4.22 there is a clear difference between the catchments
in the northern and southern part of the study area, as expected from the input forest maps
(compare Figure 4.2 and Figure 4.27). The 4™ order catchments of Tevere have high diversity
and fragmentation values, including the patch count metrics. The lowest fragmentation metric
values are found in the 4™ order catchments of Po that include a substantial part of the plain
where agriculture is dominant — and the map indicates little or no forest presence. Catchment
4 22 is shown as having surprisingly little forest cover, but this is partly due to problems with
clouds in the input images, as often in mountains. This effect also contributes to observed low
forest cover for the administrative region of Piemonte, and it is obviously a source of error in
the calculations (where pixels marked as cloud, snow etc. should preferably not be counted

in).
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PPUN Elevatio
FMERS| 4800m pixels| cover | PPUN B SHDI | SIDI | Math. | SqP n FC
|6thord [6_01 Po (1) 2027 4299 1.684 0.851| 0.799] 0.446| 3.913] 0.608 851.7| 0.397|
5th ord |5_04Po (1) 598 29.32] 1.507] 0.803] 0.745 0.431 4.273 0.636 1198.2] 0.219)
5_06 Po (2) 283 40.22] 1.629 0.852] 0.758 0.417] 3.948 0.622 531.6 O.219I
5 09 Po (3) 315 38.67| 1.853 0.89] 0.805 0.454] 5.198 0.695 706.8| 0.140
5_11Teve (4) 757 43.66( 2.129 0.915 0.966| 0.527| 5.404 0.716 561.0] 0.018]
4th ord |4 42 Po (1) 103| 44.76] 1.924] 0.943] 0.851 0.454| 5.562 0.716 494.1] 0.116
4 40 Po (2) 209] 35.89 1.823] 0.866| 0.784] 0.455 5.038 0.686 807.0| 0.105
4_22 Po (3) 257 -:.:- 0.736 0.433] 4.209 0.622] 1137.2 0.284
4_16 Po (4) 371 31.87] 1.659 0.802 0.834 0.45 4.482| 0.663] 1347.6) -
4 11 Po (5) 156 35.85 1.687| 0.821| 0.835 0.474] 4.566| 0.672 1794.0| 0.045
425 Po (6) 142| 34.42] 1.588 0.833 0.653] 0.379 3.968 - 670.9] 0.345
4_26 Po (7) 106 35.30] 1.332] 0.845 3.979 0.627 382.2] 0.425
4 12 Po (8) 149 48.26] 1.928 0.879] 0.949 0.52 0.618 683.9] 0.040
4_47 Tosc (9) 386 44.61 1.968 0.869 0.929] 0.518 4.509 0.633 334.3| 0.060
4 49 Tosc (10) 149 40.52 1.75] 0.853] 0.823] 0.473] 4.706| 0.655 347.9] 0.054
4 48 Teve (11) 339 4243 2.016] 0.905 0.955 0.532] 5.354| 0.71 459.9 0.030
4_50 Teve (12) 219 51.79] 2.595 0.951] 1.188 0.625 4.651] 0.688 924.8) 0.018]
4 52 Teve (13) 199 36.83 1.81] 0.892 0.741| 0.409] 6.317| 0.756 333.1 -
avg. 5th order 36.07] 1.663 0.848 0.769 0.434) 4.473 0.651 812.2 0.193
avg. 4th order 36.04 1.6600 0.845 0.772 0.433 4.453 0.652 914.6) 0.170

Table 4.22 Summary at catchment level of spatial metrics from the FMERS map, with medium
window size 4800m as example. The highest metrics values are highlighted in yellow, lowest values in
-. The reason that the average elevation values are not the same as for the CLC data, is that different

inclusion/forest presence masks are used.

The graphs in Figure 4.30 show the same general pattern in the selected catchments as
observed for the CLC data, although for the FMERS data used here catchment 4 52, lower
Tevere including the Rome metropolitan area, stands out with high values of M at all window
sizes, indicating high fragmentation. For the CLC data, this area does not stand out in the
same way, so the profile partly reflects the tendency of the FMERS mapping to place many
small forest patches of type OWL broadleaved in areas where CLC show no forest. Catchment
4 40, reaching from the summit of the Maritine Alps to the Po valley east of Torino, has a
profile of SHDI value similar to catchment 4 22 with CLC data. Also the SHDI diversity
metric for this catchment reaches a maximum when the sub-landscapes get sufficiently large

to include all possible forest classes. Catchment 4 26 has constantly low values for both
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metrics, because the two FMERS classes broadleaved and mixed forest dominate in the area,
and because the forest patches are relatively coherent — in fact having the highest FC value of
the catchments for this data type. Catchment 4 22 has a steeper M-value curve, with higher
values at small window sizes, this must more small-scale fragmentation, i.e. more open forest

or fringed edges, a structure typically found on mountain slopes.
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Figure 4.30 SHDI and Matheron metrics extracted from FMERS data to catchment areas, for a range of

output cell sizes.

The hierarchical nature of the catchment delineations at different orders allows comparison of
metrics for catchments at lower levels with those of higher levels. In general, the values at
higher orders are close to the average of those at lower orders, that together constitute the
catchment, as can be seen from the values in Table 4.21 and Table 4.22, and more clearly
from Table 4.23, where the intention has been to make a table structure that reflects landscape
structure. Matheron index values are used as examples, since fragmentation is indeed a
phenomenon that manifests itself in different ways at different spatial levels. All the 5™ order
catchments have small areas in the lower parts that are not amongst the 4™ order catchments

used here, but the effect of that is assumed negligible.

165



CLC Math. FMERS

4" level 4800m 4" level
th 6th 5" th
4 number 4 number

2408 | 4_42Po (1 5562| 4_42Po (1)

2.691 5.198

2.876 | 4 _40Po (2 5.038| 4 40Po (2)

2.047 4_22Po (3 4.209| 4_22Po (3)

2.157 4.273
2.082 4_11Po (5 4.566| 4_11Po (5)

) (
) (
) (
2.301 2266 | 4 16 Po (4) 3.913 4482| 4 16 Po (4)
) (
2357 | 4 25Po (6) 3.968| 4 25 Po (6)
2324 | 4 26Po (7 979| 4 26Po (7
233 23 26 Po (7) 3048 (22791 4 26Po(7)

2.305 | 4_12Po (8) 3.823| 4_12Po (8)

Table 4.23 The hierarchical approach illustrated. Average Matheron index values from windows with
extent 4800m, extracted for selected catchments in the upper Po valley plus the entire river basin (6™

order). The 5™ order catchments are from the top: 5 09, 5 04 and 5_06.

As expected, and shown in a previous section, the FMERS data yield higher values of
diversity as well as fragmentation type metrics relative to the CLC data in all catchments. The
ordering or ranking of the areas according to M value however differ significantly, as
discussed below.

4.5.5.2 Metrics values within administrative regions

Administrative regions have the advantage of being known beforehand by the people who
should use spatial metrics as environmental indicators. Areas like Piemonte and Toscana and
are also well known for certain landscape characteristics such as mush or dense forest or large
open areas with views over rolling hills. The observed metrics values for these regions are
shown in Table 4.24 and Table 4.25 below for CLC and FMERS maps respectively, and scale
profiles for selected areas and metrics are shown in Figure 4.31 and Figure 4.32. Two small
regions almost coincide with catchments: Valle d’Aosta with 4 11 (which include a bit of the

plains around Ivera to the SE of the valley) and Umbria with 4 48>,

The regionalisation results mark Liguria, situated between the Northern coast of the

Mediterranean and the Apennines, as a partiular area with dense forest cover and low

* Mountains can provide natural borders, and Umbria has been a stable geographical unit for thousands
of years.
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fragmentation. Also Valle d’Aosta has low fragmentation and high diversity, but this might be

an artefact of the re-classification since the CLC class “transitional woodland-shrub” has been

aggregated into OWL broadleaved (see Table 4.1 on page 116), though in this area it

constitutes the zone around the tree line, where it can be questioned if it constitute a separate

type of forest rather than less dense deciduous forest. Corsica, another region with large

differences in elevation within short distances, has similar high diversity values. High

fragmentation is found in middle Italy, with highest values for the Marche region, where the

forest structure can be interpreted as rather perforated with low cover but high PPUN B

value.

lcLc 4800m  |nr_pix |cover [PPUN [PPUNB|SHDI [siDI  |Math|sqP  [Elevation|Fc
Veneto 327] 3359 1.012] 0842 0465 0.27]2504 0661 4448 1.046
Lombardia 612| 3955 0.952] 083 0419 0.2452.085 0632 627.1 0.511
Piemonte 931 37.75| 1.086] 0.824] 0573 0.339]2.423 067 8386 0.147
Valle d'Aosta 123 38.55] 1.069 - 0712 0.43]1.921 - 1976.6| 0.146
Emilia Romagna] 589 36.08] 1.1 0.838] 045 02692903 0702 4738 0.630
Liguria 236| 70.96| 1.059| 0.884] 0.608 0.342- 0598 5592 -
Toscana 945 48.41| 1.063 0.868 0.519] 0.209]2.756] 0.696] 385.0] 0.044
[Marche 385 - 1331 0.875] 0511 0.317{3.948] 078] 4411 0.006
Umbria 348 42.18] 1.114] 0921] 0312 0.169)3.505 0769 517.5] 0.052
Abruzzo 423| 37.85 - 0.803:-:-2.397 0664 866.3 0.116
Lazio 494| 33.74] 0996 0812 033 0.192.654 0694 4946 0.144
Corsica 328] 43.81] 1.022] 0.842] 0678 0.388[2.202] 0682 6358 1
average value 40.96| 1.060] 0.845 0486 0.284260d 068 688.9 0.24

Table 4.24 Summary at administrative region level of spatial metrics from the CLC map, window size

4800m used as example. Highest metrics values are highlighted in yellow, lowest values in -
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[FmERS

4800m Inr_pix |Cover |PPUN |4.55.2.1.1 PPUNB Math.|SqP |[Elevation|FC
\Veneto 472 318.3] 0.417
Lombardia 574] 45.99] 1.759 0.85| 0.827] 0.46 665.9] 0.612
Piemonte 882 34.12] 1.634 0.837] 0.767] 0.438]4.459] 0.65 882.4] 0.211
\Valle d'Aosta 134 36.84] 1.697 0.823] 0.842] 0.475| 4.28] 0.653] 2058.9] 0.052
Emilia

Romagna 552 48.22] 1.755 0.876] 0.847] 0.46|3.753] 0.588 499.8] 0.739
Liguria 231 50.99] 1.836 0.92] 0.87] 0.465 4.771 0.67 561.2] 0.026
Toscana 953] 50.38] 1.904 0.879] 0.903] 0.504| 4.12] 0.614 381.9] 0.036
IMarche 326] 32.59] 1.95 0.857] 0.956] 0.525|4.912] 0.665 491.0] 0.294
Umbria 350 4317 2.18 0.908] 1.053] 0.577|5.139] 0.703 514.5 0.046
Abruzzo 455] 35.84] 2.049 0.846] 0.933 0.5]5.218] 0.698 808.7] 0.037
Lazio 561| 38.31] 1.982 0.888] 0.871] 0.474|5.979] 0.742 448.9
Corsica 329| 56.83] 1.873 0.93] 0.86] 0.477|3.993] 0.631 641.0
Average value 41.94 1.853 0.869 0.867] 0.48014.582 0.653 689.4]

Table 4.25 Summary at administrative region level of spatial metrics from the FMERS map, window

size 4800m used as example. Highest metrics values are highlighted in yellow, lowest values in BIll§.
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Figure 4.31 SHDI and Matheron metrics from CLC data, selected administrative regions, for a range of

window sizes.

The higher contrasts in the landscapes of Corsica and Valle d’Aosta is also reflected in the
shape of the scale-diversity curves, in Figure 4.31, right side. On the contrary, the Lazio and
Umbria regions have low and slowly increasing diversity values. Liguria maintains low
fragmentation values even at small window sizes while for Veneto they decrease rapidly with
increasing window size, Figure 4.31, left side. This corresponds well with the high FC value

found for this region from the CLC forest map.
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Scaling profiles, admin. FMERS Scaling profiles, admin. FMERS
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Figure 4.32 SHDI and Matheron metrics from FMERS data extracted to regions, for an interval of

window sizes.

In the FMERS data, Veneto is marked by low forest cover and low diversity within the
windows of calculation, i.e. the forest types are concentrated in specific geographical areas
and not much interspersed, i.e. the (class) richness is low throughout (this is the case for both
map types and all extents). High values of the fragmentation indicating metrics are found in
middle Italy, most in Lazio and Abruzzo, now along with high diversity values, with Umbria
having highest SHDI and SIDI values. The combination of high diversity and high

fragmentation indicates a complex interspersion of forest and other land cover types.

The biggest difference between the metric values from CLC and FMERS is observed for
Umbria, which has constantly high diversity values for the FMERS data, along with
fragmentation values less than for neighbouring region Lazio. Inspection of statistics for the
input data show that Umbria actually is a site of strong disagreement between the CLC and

the FMERS classifications.

The forest cover proportions for Veneto and Umbria from CLC and FMERS are listed in
Table 4.26, in order to examplify the effects of classification disagreements at region level
(and to illustrate how diversity metrics are calculated). Although the forest percentage is

almost the same from the two data sources in Umbria, the diversity values are at opposite ends

169



of the scale. For Veneto there is better agreement, but again the FMERS data give a higher

estimate of the forest diversity in the region.

% of % % of %
CLC tot. % of land |forest |[FMERS tot. % of land |forest
No data 0.01 No data 5.01
Coniferous 2.13 2.13[ 12.85|Coniferous 5.76 6.07| 26.86
Broadleaved
Deciduous 9.72 9.72| 58.62|Broadleaved Decid. 9.32 9.81] 43.44
[*]
@ [Broadl. Evergreen 0.00 0.00 0.00|Broadl. Evergreen 0.00 0.00 0.00
c
g Mixed 2.24 2.24( 13.49|Mixed 1.90 2.00 8.87]
OWL Coniferous 0.00 0.00 0.00[OWL Coniferous 0.19 0.20 0.88
OWL Broadleaved 2.49 2.49[ 15.03|OWL Broadleaved 4.28 4.51 19.95
Other Land 83.42 83.42 Other Land 73.54 77.42
total 100 100 100|Total 100 100 100
land_map 1.00[SHDI_forest 1.13|land_map 0.95|SHDI_forest 1.29
% forest 0.17(SHDI_land 0.87(% forest 0.23[SHDI_land 0.94|
No data 0.00 No data 2.67
Coniferous 0.60 0.60 1.50|Coniferous 5.55 5.70( 13.45
Broadleaved
Deciduous 35.08 35.08| 87.88|Broadleaved Decid.] 13.79 14.17| 33.42
Broadl. Evergreen 0.02 0.02 0.05|Broadl. Evergreen 0.14 0.14 0.34
© [Mixed 0.86 0.86 2.15[Mixed 11.89 12.22| 28.82
=
'g OWL Coniferous 0.00 0.00 0.00[OWL Coniferous 1.35 1.39 3.27
>
OWL Broadleaved 3.36 3.36 8.43|OWL Broadleaved 8.54 8.78( 20.70
Other Land 60.09 60.09 Other Land 56.06 57.60
total 100 100 100|Total 100 100 100
land_map 1.00[SHDI_forest 0.47|land_map 0.97|SHDI_forest 1.45
% forest 0.40[SHDI_land 0.41|% forest 0.42(SHDI_land

1.18|

Table 4.26 A comparison of forest proportion values and derived diversity metrics from the input data

for two administrative regions.

4553

Forest Concentration profiles

For the previously used metrics, the values at higher orders of regions and catchments are

averages of the values for lower order areas — as a consequence of the way they are derived

from the M-W outputs. This is not the case for FC values, where it is possible to have higher

values at higher orders, due to the integrative nature of this metric (i.e. the files from the
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masking process are used indirectly). The inclusion of areas with little or no forest cover,
typically in the lower parts of the catchments can give higher contrast between forested and
non-forested cells and thus higher FC values. This effect is actually seen in Table 4.27 and
Table 4.28, where values are reported for the smallest window size, 1200m and an
intermediate window size, 4800m. Furthermore, there is a remarkably good agreement
between the values extracted from the two image types, which initially shows the FC metric

as a potentially useful description of landscape structure.

cLC FC FMERS
6th 5 4" 14" Jevel number|1200m| 6™ 5 4" 14" level number
0.192 | 4 42Po (1) 0.320| 4 _42Po (1)
0.343 0.452
0.368 | 4_40Po (2) 0.453| 4 _40Po (2)
0.626 | 4_22Po (3) 1.257 | 4_22Po (3)
0515 | 4_16 Po (4) 0.507 | 4_16 Po (4)
0.760 | 0.673 0.866 | 0.851
0.530 | 4_11Po (5) 0.342| 4 _11Po (5)
0.962 | 4_25Po (6) 0.984| 4 25Po (6)
0.998 | 4 26 Po (7) 1.079| 4_26 Po (7)
0.668 0.686
0.333 | 4_12Po (8) 0.330| 4 _12Po (8)

Table 4.27 FC values for catchments in Northern Italy for window size 1200m. Highest contrasts

forest-non forest areas are found for the highest orders of catchments.

cLc FC FMERS
o 5 4" level [4800m o 5 4" level
4" number 4" number
0.036 |4 42 Po (1) 0.116 | 4 _42Po (1)
0.085 0.140
0.084 |4 40Po (2) 0.105 | 4 40Po (2)
0.154 |4 22Po (3) 0.284 | 4 22Po(3)
0.057 |4 16 Po (4 0.000 | 4 16Po (4
0.306 | 0172 _16Po (4) 0.397 | 0.219 _16Po (4)
0.101 |4 11 Po (5) 0.045 | 4 11Po (5)
0.308 |4_25 Po (6) 0.345 | 4_25Po (6)
0.325 |4 26 Po (7 0.425 | 4 26 Po (7
0.206 —26Po (7) 0.219 26Po (7)
0.069 |4 12 Po (8) 0.040 | 4 12Po (@8)

Table 4.28 FC values for same catchments as above, but with window size 4800m . The larger
window/mask cells used, give lower metric values, again with highest values for highest orders of

catchments.

The visual appearance of FC profiles for different types of catchments are shown in Figure
4.33 and Figure 4.34 below. Only values for window size up to 9600m are used, because most
catchments have zero FC values at 19200m, and many have so few cells that calculations

become statistically uncertain. The catchments (contributing to Po) in the northern part of the
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area generally have higher FC values, but they also decrease more rapidly with window size.

The crossing of the curves for 4 22 and 4 26 from FMERS data indicates that catchment

4 22 has forest patches scattered across the landscape with typical distances between 1.2 and

2.4 km (the steepest part of the curve), while catchment 4 26 further down the valley has

larger and more compact forest patches — or larger areas where no forest is found.
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Figure 4.33 CLC and FMERS inputs compared for creation of FC-profiles of selected catchments in

northern and middle Italy.

The selected administrative regions also show differences for the shape of the FC curves in

Figure 4.34, but there is good agreement between the two different data sources. There are

marked differences for Liguria, where the forest cover in the CLC maps is so dense that

hardly any non-forest cells are found (when they are found in the FMERS map it can however

be due to cloud cover), and for Lazio, where the CLC map has larger non-forest areas and thus

higher FC values at small window sizes.
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Figure 4.34 CLC and FMERS inputs compared for creation of FC-profiles of selected administrative

(NUTS-level 2) regions. Note that for both data sets the curve for Veneto corresponds to the PA y-axis.
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Generally, it seems that CLC data yield FC-curves of more different shapes and placement,

thus making it easier to characterise and distinguish between regions. Again it is the more

scattered nature of the FMERS data that is reflected in spatial metric values.

4.5.5.4 Regressions between metrics derived from different data sources within selected

arcas

The calculations made here are basically repetitions of what was done in section 4.5.4 where

correlations between values from the two different input types were made for a forest mask of

the entire study area, with results summarised in Table 4.19, Figure 4.24 and Figure 4.25.

However, here the regressions are performed for subsets of the study area. The subsets are

defined in two different ways, namely delineation by terrain and by following man-made

borders. The SHDI diversity metric and the Matheron index of fragmentation are used as

examples, and for comparison with the profiles that illustrate how metrics values vary with

window size.

Catchment — | 1200 | 2400 | 4800 | 9600 | 19200 Admin. - | 1200 | 2400 | 4800 | 9600 | 19200

SHDI m m m m m SHDI m m m m m
4 42 Po (1) 0.184 i‘ 0.256| 0.33| 0.096| [Veneto 0.291| 0.449| 0.563| 0.622| 0.675
440 Po (2) 0.254| 0.219| 0.39| 0.522| 0.58| |Lombardia | 0.219| 0.383| 0.476| 0.519| 0.538
4 22 Po (3) 0.147| 0.077| 0.257| 0.427| 0.552| |Piemonte | 0.255| 0.418| 0.505| 0.622| 0.682
4_16 Po (4) 0.338| 0.114| 0.283| 0.826| N/A| |Valle d'A. | 0.245| 0.446| 0.464| 0.343| 0.442
4_11 Po (5) 0.268| 0.192| 0.278| 0.614| 0.874| |Emilia R. 0.266| 0.432| 0.538| 0.549| 0.549
4_25 Po (6) 0.369| 0.263| 0.486| 0.713| 0.791| |Liguria 0.094| 0.143| 0.283| 0.485| 0.709
4_26 Po (7) 0.267| 0.19| 0.368| 0.583| 0.744| |Toscana 0.221| 0.337| 0.314| 0.325| 0.432
4_12 Po (8) 0.212| 0.356| 0.531| 0.311| 0.367| |Marche 0.34| 0.537| 0.611| 0.547| 0.665
4_47 Tosc (9) | 0.24| 0.344| 0.539 jl 0.217| |Umbria 0.203| 0.263| 0.228| 0.203| 0.293
4_49 Tosc (10)| 0.263| 0.489| 0.644| 0.234| 0.254| |Abruzzo 0.067| 0.096| 0.114| 0.15 0.222
4_48 Teve (11)] 0.206| 0.411| 0.643| 0.069| 0.103| |Lazio 0.287| 0.417| 0.435| 0.378| 0.069
4_50 Teve (12) jl 0.291] 0.472| 0.046 jl Corsica I:ll:ll:'l:'
4_52 Teve (13)| 0.326| 0.104 jl 0.614| 0.209| |average 0.206| 0.321| 0.365| 0.377| 0.417
Average 0.245| 0.239| 0.408| 0.421| 0.363| |st.dev. 0.106| 0.179| 0.219| 0.243| 0.298
st.dev. 0.075| 0.135| 0.156| 0.247| 0.369| |coeff.var. 0.513| 0.557| 0.6| 0.645| 0.714
coeff.var. 0.305| 0.563| 0.383| 0.587| 1.015

Table 4.29 Correlation coefficients for agreement between CLC and FMERS based values of the SHDI

diversity index at different output cell (window) sizes for selected geographic areas. Highest metrics

values are highlighted in yellow, lowest values in Bl
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Table 4.29 shows that the SHDI values have large differences between the different areas and
correlations values somewhat fluctuating with respect to window size, especially for the
catchment regions. This is contrary to what is observed for the entire study area. The average
values for the administrative regions (representing a larger part of the maps than the
catchments), however have values similar to the multiple R values at the same window sizes
in Table 4.19. The regions with highest forest concentration (FC values) and lowest
fragmentations or dense forest cover seem to have the best agreement between CLC and
FMERS data. A notable exception is the Corsica region, where the negative correlation
coefficients indicate strong disagreement between the data sources as to where the most
diverse forest areas are found. The fluctuations can be attributed to random effects, such as the
influence of where the windows happen to be placed in the landscape. The higher correlation
coefficients for large windows do not necessarily mean that they are more reliable, this is
because, with a small number of samples or output cells, confidence intervals are
correspondingly narrower. Thus the potential for establishing relations or predictions of
metrics values from one data type to another based on smaller areas remains doubtful. It also
remains to be examined whether strata such as botanical or climatic zones or based on

terrain/altitude give better agreements.
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Catchment - 19200|{| Admin. -
Math. 1200m|2400m|4800m|9600m m Math. |1200m|2400m|4800m| 9600m|19200m
4 42 Po (1 -0.039| 0.261| 0.181| 0.34 ﬁ \Veneto

)

4_40 Po (2) 0.006| 0.451| 0.509| 0.486| 0.542[|Lombardia 0.182| 0.367 0.54

4_22 Po (3) -0.112|  0.28| 0.377| 0.311] 0.272|[Piemonte 0.227| 0.441| 0.579] 0.629
4_16 Po (4) jl 0.544| 0.498| 0.509| N/A||Valle d'A. 0.183| 0.129] 0.207| 0.324| 0.461
4_11 Po (5) -0.009| 0.449| 0.466| 0.348| 0.595(|Emilia R. 0.043| 0.315] 0.548] 0.709] 0.814
4_25 Po (6) 0.014| 0.52| 0.643| 0.661| 0.858]|[Liguria -0.029| 0.205] 0.31| 0.417] 0.438
4_26 Po (7) -0.092| 0.504| 0.577| 0.57| 0.554||Toscana 0.031| 0.402| 0.581| 0.704| 0.747
4_12 Po (8) 0.144| 0.345| 0.407| 0.726| 0.91||Marche -0.1] 0.276| 0.552| 0.727| 0.795

4_47 Tosc (9) | 0.117| 0.376| 0.285| 0.68 0.8[ |Umbria -0.058| 0.454| 0.71| 0.791] 0.858
4_49 Tosc (10)| 0.199| 0.316| 0.305| 0.816| 0.948|[Abruzzo 0.019| 0.324| 0.51] 0.611| 0.502

4_48 Teve (11)| 0.128| 0.251| 0.207| 0.744| 0.742||Lazio 0.208| 0.134| 0.225] 0.247| 0.363
4_50 Teve (12)| 0.121 - 0.542| 0.407||Corsica -0.01] 0.113] 0.248] 0.339] 0.488
4_52 Teve (13)| -0.052| 0.465| 0.429 0.539| |average 0.019) 0.231) 0.399 0.514| 0.591
Average 0.023 0.380, 0.387| 0.539| 0.601|[St.dev. 0.102| 0.128) 0.187| 0.207| 0.193
st.dev. 0.109| 0.117| 0.155] 0.180| 0.271||coeff.var. 5.505| 0.553| 0.468) 0.402) 0.327
coeff.var. 4.817) 0.308| 0.400| 0.335 0.450

Table 4.30 Correlation coefficients for agreement between values of the Matheron index, based on
CLC and FMERS data, at different output cell (window) sizes for selected geographic areas. Highest

metrics values are highlighted in yellow, lowest values in -

Table 4.30 shows that, on average M values have higher correlations for the regions used here
than for the entire study area (compare Table 4.19). As expected and following the large
differences in the structure and composition of the data sets, as described in the above
sections, there are marked differences between the regions, and no clear pattern of zones with
high correlations emerge. Surprisingly, the Corsica region has positive correlation values for
this forest structure metric, so the problem of agreement lies more with composition than with
extent and texture of forest across the landscape. See also, for comparison Table 4.26 with
description of forest composition for Veneto and Umbria.

4.5.5.5 Test for variability

Table 4.31 and Table 4.32 report the average of the coefficient of variation for each of the
spatial metrics within administrative and catchment regions respectively. The purpose of
comparing the values is to examine whether one of the delineation approaches produces more

homogenous regions in terms of metric values.
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catchmts./[CLC_COV [CLC_PPUN|CLC_PPUNB|CLC_SHDI|CLC_M CLC_SqP |CLC_AIt
1200 0.625 0.582 0.629 1.291 0.618 0.604 0.603
2400 0.680 0.363 0.277 0.995 0.500 0.356 0.653
4800 0.696 0.234 0.152 0.757 0.422 0.193 0.682
9600 0.670 0.157 0.095 0.572 0.353 0.085 0.728

Admin.
1200 0.616 0.567 0.634 1.353 0.627 0.608 0.640
2400 0.663 0.345 0.284 1.016 0.504 0.357 0.696
4800 0.690 0.225 0.164 0.783 0.426 0.196 0.760
9600 0.694 0.157 0.106 0.608 0.370 0.097 0.799

Table 4.31 Mean values of coefficients of variation for selected metrics from the CLC data and

elevation from DTM, average values from the 13 4" level catchments and the 12 regions.

catchmts.[FM_cover [FM_PPUN |[FM_PPUNB|FM_SHDI [FM_M FM_SqgP |FM_alti
1200 0.673 0.625 0.612 0.847 0.598 0.693 0.661
2400 0.743 0.463 0.297 0.640 0.468 0.417 0.663
4800 0.725 0.372 0.200 0.478 0.375 0.194 0.690
9600 0.674 0.312 0.141 0.360 0.303 0.078 0.719

Admin.
1200 0.648 0.624 0.650 0.797 0.653 0.730 0.682
2400 0.737 0.488 0.301 0.624 0.521 0.453 0.744
4800 0.727 0.401 0.206 0.454 0.431 0.222 0.783

9600 0.703 0.350 0.156 0.335 0.366 0.102 0.795
Table 4.32 Mean values of coefficients of variation for selected metrics from the FMERS data and

elevation from DTM, average values from the 13 4" level catchments and the 12 regions.

When comparisons are made between values of metrics from the same data source and at the
same window size (within each table), no clear differences or trends emerge. Thus, it can not
be concluded that one or the other regionalisation approach produces more homogenous
regions with smaller internal variance of the metrics values. The decreasing values of SqP
variance with increasing window size can be attributed to the nature of the metric (more
separate patches in larger windows give values closer to 1) and not to an actual smaller
difference in forest structure between the windows. Note however the differences in
variability of the patch count metrics, where FMERS maps have the highest values and of the
SHDI metric, where CLC maps have the higher values. This is also seen from Figure 4.18 and
Figure 4.19, though the variance values there are calculated only for each output cell and its

immediate neighbours.
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4.5.5.6 Test for agreement - CLC-FMERS

This final sub-section examines the results derived at regional level, comparing the relative
values per region to examine whether they give the same general image of the study area (i.e.
will thematic maps of a given spatial metric look the same, when derived from CLC and

FMERS data?).

When the 12 administrative regions are compared, the critical value of observed t
(Spearman’s rank transformed to t-distribution values, assuming a two—sided distribution ) is
2.201 for the rank correlation at 5% confidence interval and 1.796 at 10%, corresponding to
coefficients of +/- 0.6354 and +/-0.5185 respectively. When the 13 catchment regions are
compared, the critical value of observed t is 2.179 at 5% confidence and 1.728 at 10%. The
values in Table 4.33 and Table 4.34 below are the rank correlations, with indications of
possible significance. Note that some of the correlations are negative. Though not significant,
these values indicate strong disagreement between the CLC and the FMERS data. It is no
surprise that this is seen for the SHDI diversity metric as calculated on admin. regions, where
the CLC data generally give highest values in the northern regions, and FMERS data give
highest values in middle Italy. In this test the administrative regions have 12 instances of
significant agreement, hereof one at 10% confidence level, the catchments have 16, hereof
five of them at 10% confidence level, so it seems that with this approach, catchments are more

effective for mapping of spatial metrics.
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window size

Italian admin. regions n=12

Metrics 1200 2400 4800 9600 19200

Cover 0.510 0.727** | 0.797** | 0.734* | 0.720**
PPUN -0.119 -0.077 -0.021 0.112 0.224

PPUN_B 0.136 0.168 0.549* | 0.703** | 0.797**
Math. 0.364 0.273 0.259 0.224 0.280

SHDI -0.517 -0.517 -0.385 -0.329 -0.378
SIDI -0.105 0.035 0.108 -0.017 -0.332
SqP 0.140 0.070 0.080 0.262 0.367

FC 0.811** | 0.755" | 0.804* | 0.776™ | 0.781**

Table 4.33 Spearman’s rank correlation coefficients for agreement between spatial metrics from CLC
and FMERS forest maps, extracted for the 12 northernmost administrative regions in Italy. ** indicate

significance at 5% probability level, * at 10% level, assuming a two-sided Student’s t-distribution.

window size
Italian catchments n=13
Metrics 1200 2400 4800 9600 19200
Cover 0.549* | 0.738** | 0.761** | 0.846** | 0.755**
PPUN 0.234 0.475 0.703** | 0.569* 0.529*
PPUN_B -0.092 0.443 0.635** | 0.620** | 0.643**
Math. -0.069 0.275 0.623** | 0.503* 0.595*
SHDI -0.086 0.003 0.132 0.140 0.063
SIDI -0.092 -0.169 -0.006 0.114 -0.066
SqP 0.253 0.220 0.349 0.463 0.169
FC 0.658** 0.435 0.413 0.615*

Table 4.34 Spearman’s rank correlation coefficients for agreement between spatial metrics from CLC

and FMERS forest maps, extracted for 13 selected 4™ level catchments in northern and middle Italy.
The difference between the two regionalisation approaches is especially pronounced for the
patch count metrics, where the catchments show good agreement for the PPUN values at
larger window sizes, but not so for the admin. regions. For catchments the Matheron index
value show agreement at window sizes of 4800m and above, for admin. regions neither M nor
SqP show significant agreement, still M seems to be the better choice for an indicator of forest

fragmentation.

The results here, along with the analysis for variability indicate that for “thematic” mapping of

spatial metrics, the smallest window sizes should be avoided, if the resulting pattern should
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be compared with metrics from other data sources. For the catchments, the fragmentation
metrics of PPUN_B and the Matheron index have higher rank correlation at 4800m window
size, than at 2400 or 9600m, thus a window size of around Skm seems appropriate for
mapping of forest structure. In terms of pixels that is 50*50=2500 at 100m resolution or

25*25=625 at 200m resolution.

In general, the metrics are seen to behave very differently in the different regions,
administrative as well as catchments. Local circumstances rather than general scaling

properties dominate, and for the diversity metrics a north-south gradient of values is visible.

4.6 Discussion of results from application of Moving-Windows

In this section, the findings from the previous section are summarised, following the structure
of the results section. It is here intended to interpret the results and put them into a broader

context. Then the methods used are evaluated.

4.6.1 Evaluation of results

1) Responses to window size

The examination of the metrics’ response to window size show a similar behaviour for the two
data sets, even though the structural metrics Matheron index and PPU have markedly different
numerical values, i.e. higher values for FMERS data. Also the compositional metrics SHDI
and SIDI have higher values for FMERS, confirming that (according to this map) forest
patches are smaller, more scattered and the classes more interspersed. With one exception
(PPUN_B which initially increased for the FMERS data) the metrics values increased or
decreased steadily with window size. The diversity metrics and the SqP metric constantly
increase with window size, the other metrics constantly fall. Patch count metrics are known to
vary with window size, but the normalisation proposed here seem to restrain that. A
remarkably good agreement was found between the forest cover-background patches curves

for the two data sets. Also the SqP metric vary with window size, an effect that is so far not
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accounted for, but quantification of the influence of extent (working with controlled/artificial
landscape maps) could prove useful.

The changes in metrics value, variability and correlations with extent is in line
with the observations made by Riitters ez a/ (2000), of the changing fragmentation related
characteristics with increasing window sizes. The relatively rapid changes in metrics values
and correlations at small window sizes point to the relevance of the observation by O’Neill ef
al (1996), that the window/extent must be at least 2 to 5 times larger than the (forest) patches

in order to give representative values.

2) Variability and autocorrelation

Regarding standard deviation for an output cell and its eight nearest neighbours (3*3
window), examination of variability and autocorrelation of the metrics show better agreement
between the st.dev. values from CLC and FMERS data, than for the metrics values per se, in
terms of response to changing extent (Figure 4.16 and Figure 4.17 are very similar, compared
to the response curves in Figure 4.11). For the cover metric, window sizes with low standard
deviation correspond roughly to sizes with high autocorrelation as expressed with Moran’s .
The latter however show more distinct peaks and troughs, allowing recommendations for
making maps of forest structure, and will surely provide more characteristic profiles of forest
structure in separate and different study areas. The large area of study makes it hard to
distinguish any characteristic forest/landscapes from the local variability values, as it was
otherwise intended, for selection of appropriate window sizes for M-W based maps of forest
structural metrics. Identification of such characteristic scales will probably require studies by

region or stratum and using higher resolution data as well.

3) Relationships between different metrics from one data source
Calculation of the correlations between the different metrics for each data type and
(geographic) window size provides interesting insight into the behaviour of the metrics, as

well as of the scale of structure and processes in the landscape, and the similarities and
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differences between the two data sets. Given the large number of observations (output cells)
even for large window sizes, almost all correlations are significant. The development of
correlations between the metrics of cover and fragmentation (Table 4.17 and Table 4.18) show
that the same combination of metrics cannot necessarily be used to describe an area at
different resolutions or window sizes. The two diversity metrics SHDI and SIDI are so highly
correlated that very little extra information is provided by reporting both. If a group of metrics
to represent landscape properties should be selected, it could for instance be, for window size
4800m: cover, SIDI and the Matheron index. They represent forest fraction, composition and

structure and are only weakly correlated (Table 4.11 and Table 4.12).

4) Correlations between similar metrics from different data sources

The correlations between the values from the two different image types generally increase
with window size. This is to a smaller extent due to gradual elimination of possible bias from
a geographic co-registration of the images that is not sufficiently precise®'. The increase also
reflects a gradual softening of the MW-output images, as small areas with special structure (in
one of the image types) become integrated with their surroundings. Across scales, the cover
metric shows the best agreement between the two map types, followed by the patch count
metrics and the Matheron index. The diversity metrics and SqP show low correlations even at
large window sizes, the former reflecting large-area differences in (classification of) forest
composition that make it hard to substitute on map type with the other, the latter showing that
the Matheron index is to be preferred for comparisons of forest fragmentation etc. between

data sources.

5) Comparison of regionalisation approaches
Extraction of metric values for subsets of the study area in the form of catchments and

administrative regions proved interesting and illustrative. At all the window sizes used,

*! Here the image were co-registered to the Corine projection using the definitions from the image
processing software (ENVI) — perhaps for large areas and different data sets as in this exercise, GCP-
collection and pixel-to-pixel comparison is needed.
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average metrics values clearly varied. The set of regions (13 4™ order catchments and 12
administrative regions) was not large enough to identify north-south or altitude controlled
trends, but it was possible to explain extreme values with properties of the maps and the
geographic reality behind them. The region approach allowed calculation of the new forest
concentration (FC) metrics, which turned out to be a good descriptor of the general forest
structure, but it could also apply to other land cover, vegetation or habitat types or even urban
classes or population concentration. The metric is well suited for graphic reporting in the form
of FC-profiles. A hierarchical structure for reporting the initial metrics and the FC values in
table form seems useful. Regressions between the two data sources was performed within the
regions and results for the SHDI and Matheron metrics presented. As expected low correlation
values were found for small windows, and higher but varying values for larger windows (with
fewer pixels to supply values). The M index on the average showed a higher correlation
coefficient than for similar window sizes for the entire area, especially within the catchments.
Calculations of variability within the regions showed little differences, and the pronounced
differences found were related to data type rather than to region type. Thus, the
recommendations given by amongst others Apan et a/ (2000), Paracchini et al (2000), Vogt et
al (2003) for use of catchments/watersheds or (more locally) headwaters as reference units for

landscape metrics could not be confirmed in this study.

4.6.2 Evaluation of methods

Concerning the methods used in this chapter, the use of special IDL-scripts to carry out the M-
W calculation proved practical, as it has been possible to modify the scripts after initial
calculations, for instance to exclude background pixels from calculations of forest diversity
and to output also the number of background patches. The process of getting from input
images to final statistic was however quite tedious, as illustrated in Figure 4.9 on page 128.
Work is ongoing to make scripts that output the M-W results as binary map files in Idrisi

raster format — this will also save disk space, as the current comma separated text format can
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result in very large files for small window sizes™. The creation of thematic maps from Corine
Land Cover was simple and straightforward, the considerations mostly being on which classes

to include and how to label them (Table 4.1).

Implementing and using the M-W approach has provided many useful results and insights,
and highlighted some general considerations and problems related to the calculation of spatial
or landscape metrics. For instance whether or not to include background pixels in metrics
calculations (typically for the ‘total number of pixels in window’ parameter) or how to handle
non-forest land. In this implementation no distinction was made between background and
‘other land’, and that partly explains the decrease in forest cover percentage with increasing
window sizes (as water/sea became included in total window area). The definition and use of
the PPUN and PPUN_B metrics for characterising patch density has proved feasible and these
metrics are used along with the structure and compositional metrics in description of the total
landscape structure. The results, as expressed in the appearance of the output maps and the
extent-variance curves confirm the observations by Eiden et a/ (2000) that results vary
strongly with window size and that too large windows smooth out potentially useful

information.

The creation of scaling profiles or scalograms for metrics following window size has proved a
useful tool for the understanding of scale (or in this chapter rather extent) effects on spatial
metrics values. Also calculation and graphical illustration of variance and autocorrelation of
the M-W outputs has helped in understanding the effects associated with this approach.
Woodcock and Strahler (1987) proposed that graphs of local variance in images as a function
of spatial resolution may be used to measure spatial structure in images. Here the objective

was to measure spatial structure of maps of spatial metrics, and the results were not as distinct

22 Output as Idrisi images is possible in the latest version of Fragstats for Windows, where M-W has
been implemented, although with step fixed at one pixel, which results in long calculation time and
large output files. The software can be downloaded for free from:
http://www.umass.edu/landeco/research/fragstats/fragstats.html (accessed 15/11 2003).
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as in the examples used (ibid, figure 2 and 4), and for this type of data, graphs of extent versus
autocorrelation seem to be more useful. Plots of the coefficient of variance, a normalised
value, against window size seems to be more informative than plots of standard deviation
against window size, as the former approach produces more distinct response curves (compare
Figure 4.16 with Figure 4.18 and Figure 4.17 with Figure 4.19). The values of Moran’s [ were
calculated in Idrisi, and it might save some time, files and space if it becomes integrated in the

IDL-scripts that provide the metrics values.

Regression between images at the pixel level, in order to test agreement between calculation
approaches (here: choice of input data) turned out to be simple and fast, with most of the work
load lying in the preparation of spreadsheet files for creation of the graphic representations.
The regressions were preformed using forest (presence) masks, following the “OR” approach,
in order to make sure that all possible forest cells/windows were included in the calculations,
even if some of them have zero values. It was assumed that use of the “AND” approach would
be too restrictive, though it would be interesting to compare results derived with these two

approaches.

The extraction of spatial metrics values for administrative regions and catchments was
straightforward, following standard GIS and image processing techniques. This was also done
for the creation of forest concentration (FC) profiles and hierarchical tables for reporting the
values at different levels, in this case hydrological, but it could also have been administrative
levels. The combination of metrics calculation within M-Ws and reporting of average and
variance values for physical or administrative regions makes it possible to eliminate the
influence of region size, which would for instance make patch count and richness metrics less
useful. The agreement between the data sources within the study area at region level was
examined using rank correlation, which proved useful in distinguishing metrics and window

sizes suitable for comparison (in the form of thematic maps).
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In this chapter, some interesting results for the structure of the forest landscape of the study
area have been found, especially with regard to indicators for reporting at regional level, and
most of the methods that were introduced and proposed in relation to M-W analysis of

landscape structure have proven feasible.

4.7 Conclusions — implications for forest monitoring

The CLC dataset appears to be a useful base for a forest map at 100m pixel size, with distinct
forest patches and a realistic distribution of forest types following terrain and climatic
gradients. The FMERS dataset give a somewhat different picture for the sub-continental forest
map at 200m pixel size, but the results here show good agreement with the CLC map for basic
spatial properties such as forest cover and concentration and reasonably good agreements for

structural properties such as Matheron fragmentation index and the PPUN metric.

Working with two different data sources, a suite of spatial metrics and a number of different
window sizes has made it clear that, there are no obvious ‘best’ choices of metrics and
window sizes for summarising and illustration forest structure and diversity. The selections
must depend on the properties of the input data (particularly spatial and thematic resolution)
as well as the purpose of the M-W analysis (analytical, illustrative or auxiliary to further
image processing). Then inspection of the extent-variance curves and of the correlations
between metrics values can help the user to choose the metrics images with the highest

information content and least redundancy.

The application of M-W methods could be seen as a way of addressing the MAUP as it
appears in the use of different reference units for reporting of landscape metrics. At least for
production of maps of the metrics, the potentially distorting effects of region size and shape
are avoided. The grainy or edgy appearance of the outputs at large window sizes could be

avoided, if the results were smoothed following the approach described by Eiden et a/ (2000)
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or produced with a software similar to Fragstats for Windows, where the step of the window is

equal to input pixel size.

In summary, the set of methods described here provide an approach for assessment of
structural and compositional properties of forests over large areas from medium-resolution
satellite imagery (100-200m grain size), comparison between regions and monitoring of
environmental conditions, given the availability of regularly updated images or maps. In the
following chapter, a thematically detailed data set on land use-land cover delivered in vector
format will be compared with satellite land cover maps at a higher spatial resolution than used
here, namely 25 metres. These satellite data based maps will represent the 'monitoring’'
approach, in contrast to the 'mapping' approach of the Danish Area Information System and

the Corine Land Cover database.
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